Mast cells (MC) are innate immune cells present in virtually all body tissues with key roles in allergic disease and host defense. MCs recognize damage-associated molecular patterns (DAMPs) through expression of multiple receptors including Toll-like receptors and the IL-33 receptor ST2. MCs can be activated to degranulate and release pre-formed mediators, to synthesize and secrete cytokines and chemokines without degranulation, and/or to produce lipid mediators. MC numbers are generally increased at sites of fibrosis. They are potent, resident, effector cells producing mediators that regulate the fibrotic process. The nature of the secretory products produced by MCs depend on micro-environmental signals and can be both pro- and anti-fibrotic. MCs have been repeatedly implicated in the pathogenesis of cardiac fibrosis and in angiogenic responses in hypoxic tissues, but these findings are controversial. Several rodent studies have indicated a protective role for MCs. MC-deficient mice have been reported to have poorer outcomes after coronary artery ligation and increased cardiac function upon MC reconstitution. In contrast, MCs have also been implicated as key drivers of fibrosis. MC stabilization during a hypertensive rat model and an atrial fibrillation mouse model rescued associated fibrosis. Discrepancies in the literature could be related to problems with mouse models of MC deficiency. To further complicate the issue, mice generally have a much lower density of MCs in their cardiac tissue than humans, and as such comparing MC deficient and MC containing mouse models is not necessarily reflective of the role of MCs in human disease. In this review, we will evaluate the literature regarding the role of MCs in cardiac fibrosis with an emphasis on what is known about MC biology, in this context. MCs have been well-studied in allergic disease and multiple pharmacological tools are available to regulate their function. We will identify potential opportunities to manipulate human MC function and the impact of their mediators with a view to preventing or reducing harmful fibrosis. Important therapeutic opportunities could arise from increased understanding of the impact of such potent, resident immune cells, with the ability to profoundly alter long term fibrotic processes.
Background: Obesity is a risk factor that negatively impacts outcomes in patients undergoing heart surgery by mechanisms that are not well-defined nor predicated on BMI alone. This knowledge gap has fuelled a search for biomarkers associated with cardiovascular diseases that could provide clinical insight to surgeons. One such biomarker is growth differentiation factor15(GDF15), associated with inflammation, metabolism, and heart failure outcomes but not yet examined in the context of obesity and cardiac surgery outcomes. Methods: Patients undergoing open-heart surgery were consented and enrolled for blood and tissue (atria) sampling at the time of surgery. Biomarker analysis was carried out using ELISA and western blot/qPCR, respectively. Biomarker screening was classified by inflammation(NLR, GDF15, Galectin3, ST2, TNFR2), heart failure(HF)/remodeling(NT-proBNP) and metabolism(glycemia, lipid profile). Patients were categorized based on BMI: obese group (BMI ≥30.0) and non-obese group(BMI 20.0-29.9). Subsequent stratification of GDF15 high patients was conservatively set as being in the 75th percentile. Results: A total of 80 patients undergoing any open-heart surgical interventions were included in the study. Obese (mean BMI = 35.8, n = 38) and non-obese (mean BMI = 25.7, n = 42) groups had no significant differences in age, sex, or co-morbidities. Compared to other biomarkers, plasma GDF15 (mean 1,736 vs. 1,207 ng/l, p < 0.001) was significantly higher in obese patients compared to non-obese. Plasma GDF15 also displayed a significant linear correlation with BMI (R 2 = 0.097; p = 0.0049). Atria tissue was shown to be a significant source of GDF15 protein and tissue levels significantly correlated with plasma GDF15 (R 2 = 0.4, p = 0.0004). Obesity was not associated with early/late mortality at median follow-up >2years. However, patients with high GDF15 (>1,580 ng/l) had reduced survival (65%) compared to the remaining patients with lower GDF15 levels (95%) by Kaplan Meier Analysis (median >2 years; p = 0.007). Conclusions: Circulating GDF15 is a salient biomarker likely sourced from heart tissue that appears to predict higher risk obese patients for adverse outcomes. More Sarkar et al. GDF15, Obesity and Heart Surgery importantly, elevated GDF15 accounted for more sensitive outcome association than BMI at 2 years post-cardiac surgery, suggesting it heralds links to pathogenicity and should be actively studied prospectively and dynamically in a post-operative follow-up. Trial number: NCT03248921.
BackgroundThe characteristics of circulating inflammatory cells (leukocytes) in patients undergoing heart surgery remains poorly understood. Recently, neutrophil-to-lymphocyte ratio (NLR) and specific monocyte subsets (based on CD14/CD16 expression) have been suggested as markers of inflammation and predictors of outcomes. The present study aims to characterize the influence cardiac surgery with cardiopulmonary bypass has on specific circulating leukocytes.MethodsAll enrolled patients had blood samples taken pre- (0 days), early post- (5 days), and late post- (90 days) surgery. Complete blood counts were performed and whole leukocyte isolations were obtained from blood samples and analyzed with flow cytometry. Fluorophore-linked antibodies (CD45, CD11b, CD14, and CD16) were added to the blood cell isolations and later assessed by flow cytometry.ResultsSeventeen patients were enrolled and samples obtained at 0, 5, and 90 days. We demonstrated a significant increase in NLR (2.2-fold; p = 0.0028) and CD16 mean fluorescence index (MFI-measure fluorescence intensity shift of CD16 in a gated cell population) early at day 5 (2.0-fold; p = 0.0051). Both NLR and CD16 MFI levels generally returned to normal by day 90. There was a significant positive correlation between NLR and CD16 MFI (r2 = 0.29; p = 0.0064). Adverse cardiovascular event (AE) was defined as prolonged length of hospitalization or readmission to hospital for cardiac reasons after discharge was seen in 59% of patients (no deaths occurred). In an unadjusted analysis of AE, we identified NLR as a likely predictor of AE, which meant that patients developing AE had a significantly higher baseline NLR (p = 0.0065), something that was not observed with CD16 MFI (p = 0.2541).ConclusionCardiac surgery is associated with a significant increase in NLR and CD16 MFI (non-classical monocytes) early after surgery corresponding to the early inflammatory phase after surgery. Furthermore, we have, for the first time, identified a significant correlation between NLR and CD16 MFI. While the mechanism for this relationship remains unclear, our findings support the use of a simple test of NLR as a biomarker of inflammation for predicting outcomes in cardiac surgery patients.
BackgroundThe objectives of the study were to characterize and quantify cellular inflammation and structural remodeling of human atria and correlate findings with molecular markers of inflammation and patient surrogate outcome.MethodsVoluntary participants undergoing heart surgery were enrolled in the study and blood samples were collected prior to surgery, and right atrium samples were harvested intraoperatively. Blood samples were analyzed by flow cytometry and complete blood counts. Atrial samples were divided for fixed fibrosis analysis, homogenized for cytokine analysis and digested for single cell suspension flow cytometry.ResultsA total of 18 patients were enrolled and samples assessed. Isolated cells from the atria revealed a CD45+ population of ~ 20%, confirming a large number of leukocytes. Further characterization revealed this population as 57% lymphocytes and 26% monocyte/macrophages (MoΦ), with the majority of the latter cells being classical (CD14++/CD16−). Interstitial fibrosis was present in 87% of samples and correlated significantly with patient age. Older patients (> 65) had significantly more atrial fibrosis and cellular inflammation. AFib patients had no distinguishing feature of atrial fibrosis and had significantly greater CD45+ MoΦ, increased expression of MMP9 and presented with a significant correlation in length of stay to CCL-2/MCP-1 and NLR (neutrophil-to-lymphocyte ratio).ConclusionAtrial fibrosis is correlated with age and not determinate to AFib. However, severity of atrial leukocyte infiltration and markers of matrix degradation are determinant to AFib. This also correlated with CCL2 (or MCP-1) and NLR-indicative of marked inflammation. These data show the potential importance of diagnostic and prognostic assessments that could inform clinical decision making in regard to the intensity of AFib patient management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.