Loss of the retinal pigment epithelium (RPE) because of dysfunction or disease can lead to blindness in humans. Harnessing the intrinsic ability of the RPE to self-repair is an attractive therapeutic strategy; however, mammalian RPE is limited in its regenerative capacity. Zebrafish possess tremendous intrinsic regenerative potential in ocular tissues, including the RPE, but little is known about the mechanisms driving RPE regeneration. Here, utilizing transgenic and mutant zebrafish lines, pharmacological manipulations, transcriptomics, and imaging analyses, we identified elements of the immune response as critical mediators of intrinsic RPE regeneration. After genetic ablation, the RPE express immune-related genes, including leukocyte recruitment factors such as interleukin 34. We demonstrate that macrophage/microglia cells are responsive to RPE damage and that their function is required for the timely progression of the regenerative response. These data identify the molecular and cellular underpinnings of RPE regeneration and hold significant potential for translational approaches aimed toward promoting a pro-regenerative environment in mammalian RPE.
Loss of the retinal pigment epithelium (RPE) due to dysfunction or disease can lead to blindness in humans. Harnessing the intrinsic ability of the RPE to self-repair is an attractive therapeutic strategy; however, mammalian RPE is limited in its regenerative capacity. Zebrafish possess tremendous intrinsic regenerative potential in ocular tissues, including the RPE, but little is known about the mechanisms that drive RPE regeneration. Here, utilizing zebrafish, we identified elements of the immune response as critical mediators of intrinsic RPE regeneration. Macrophages/microglia are responsive to RPE damage and are required for the timely progression of the regenerative response and our data highlight that inflammation post-RPE injury is also critical for normal RPE regeneration. To our knowledge, these data are the first to identify the molecular and cellular underpinnings of RPE regeneration in any system and hold significant potential for translational approaches aimed towards promoting a pro-regenerative environment in mammalian RPE.
A critical step in eye development is closure of the choroid fissure (CF), a transient structure in the ventral optic cup through which vasculature enters the eye and ganglion cell axons exit. While many factors have been identified that function during CF closure, the molecular and cellular mechanisms mediating this process remain poorly understood. Failure of CF closure results in colobomas. Recently, MITF was shown to be mutated in a subset of human coloboma patients, but how MITF functions during CF closure is unknown. To address this question, zebrafish with mutations in mitfa and tfec, two members of the Mitf-family of transcription factors, were analyzed and their functions during CF closure determined. mitfa;tfec mutants possess severe colobomas and our data demonstrate that Mitf activity is required within cranial neural crest cells (cNCCs) during CF closure. In the absence of Mitf function, cNCC migration and localization in the optic cup are perturbed. These data shed light on the cellular mechanisms underlying colobomas in patients with MITF mutations and identify a novel role for Mitf function in cNCCs during CF closure.
StatementMitf-family transcription factors act within cranial neural crest cells to promote choroid fissure closure. Without Mitf-family function, cNCC localization and function in the CF is disrupted, thus contributing to colobomas. AbstractA critical step in eye development is closure of the choroid fissure (CF), a transient structure in the ventral optic cup through which vasculature enters the eye and ganglion cell axons exit. While many factors have been identified that function during CF closure, the molecular and cellular mechanisms mediating this process remain poorly understood. Failure of CF closure results in colobomas. Recently, MITF was shown to be mutated in a subset of human coloboma patients, but how MITF functions during CF closure is unknown. To address this question, zebrafish with mutations in mitfa and tfec, two members of the Mitf-family of transcription factors, were analyzed and their functions during CF closure determined. mitfa;tfec mutants possess severe colobomas and our data demonstrate that Mitf activity is required within cranial neural crest cells (cNCCs) to facilitate CF closure. In the absence of Mitf function, cNCC migration and localization in the optic cup are perturbed. These data shed light on the cellular mechanisms underlying colobomas in patients with MITF mutations and identify a novel role for Mitf function in cNCCs during CF closure. We declare no competing interests. . Relationship between neural crest cell specification and rare ocular diseases. J. Neurosci. Res. 97, 7-15. . Rescue of neural crest-derived phenotypes in a zebrafish CHARGE model by Sox10 downregulation. Hum. Mol. Genet. 25, 3539-3554. Barbieri, A. M., Broccoli, V., Bovolenta, P., Alfano, G., Marchitiello, A., Mocchetti, C., Crippa, L., Bulfone, A., Marigo, V., Ballabio, A., et al. (2002). Vax2 inactivation in mouse determines alteration of the eye dorsal-ventral axis, misrouting of the optic fibres and eye coloboma. Development 129, 805-13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.