Na+/K+-ATPase alpha 2 (Atp1a2) is an integral plasma membrane protein belonging to the P-type ATPase family that is responsible for maintaining the sodium (Na+) and potassium (K+) gradients across cellular membranes with hydrolysis of ATP. Atp1a2 contains two subunits, alpha and beta, with each having various isoforms and differential tissue distribution. In humans, mutations in ATP1A2 are associated with a rare form of hereditary migraines with aura known as familial hemiplegic migraine type II. Genetic studies in mice have revealed other neurological effects of Atp1a2 in mice including anxiety, fear, and learning and motor function disorders. This paper reviews the recent findings in the literature concerning Atp1a2.
Atp1a2 has been previously studied for anxiety, learning and motor function disorders, and fear. Since Atp1a2 has been shown to be involved in anxiety and this behavior is a known risk factor for developing alcoholism, we have been investigating Atp1a2 for its potential role in responses to alcohol. This study utilized Atp1a2 knockout mice; Atp1a2 heterozygous mice, with half the amount of protein compared to wild-type mice, were used because Atp1a2 homozygous null mice die shortly after birth. The alcohol-related behavioral experiments performed were loss of righting reflex (LORR), acute alcohol withdrawal measured by handling-induced convulsions (HIC), drinking in the dark (DID), open-field activity (OFA), and elevated plus-maze (EPM). LORR was a 2-day test that measures acute alcohol sensitivity, and rapid and acute functional tolerance (AFT). HIC was a 3-day test to measure alcohol withdrawal, DID was a 4-day test which measures voluntary alcohol consumption, and OFA and EPM measured anxiety with alcohol exposure. The effect of genotype on alcohol metabolism was also examined. There was a genotype effect on rate of alcohol metabolism, but only in males. There was no effect on alcohol withdrawal severity. The Atp1a2 heterozygous mice consumed more alcohol than wild-type mice in the DID test, although only in males. In addition, only males were observed to show rapid tolerance in the LORR test while only female heterozygous mice showed a pretreatment effect on AFT. Alcohol exposure had a greater anxiolytic effect in the heterozygous mice compared to wild-type mice, although, again, there were sex effects with only males showing the effect in OFA and only females in the EPM. Although the behavioral results were mixed, there does appear to be a connection between anxiety and alcohol. Overall, the results suggest that Atp1a2 does contribute to alcohol-related behaviors, although the effect is modest with a clear dependence on sex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.