Wetlands provide multiple services to human societies. Despite policies dedicated to their protection, current European policies do not address the need to balance mosquito management approaches to mitigate dis‐services to human health and well‐being while ensuring that wetland conservation goals are met. Herein, we outline criteria for consideration when developing mosquito control programmes in European wetlands that will allow managers and public health authorities to adopt effective and ecologically sound approaches. Synthesis and applications. The proposed code of practice provides practical advice to local authorities and those involved in mosquito control in order to design an integrated mosquito management strategy that aligns with current environmental legislation. Although this code of practice was developed by European experts, it is transferable to other geographical contexts, integrating the expertise and knowledge of local stakeholders and researchers from the fields of medical entomology, human and animal health and ecology.
The risk of spillover of zoonotic diseases to humans is changing in response to multiple environmental and societal drivers, particularly in tropical regions where the burden of neglected zoonotic diseases is highest and land use change and forest conversion is occurring most rapidly. In these regions, neglected zoonotic diseases can have significant impacts on poor and marginalised populations in low-resource settings but ultimately receive less attention and funding for research and interventions. As such, effective control measures and interventions are often hindered by a limited ecological evidence base, which results in a limited understanding of epidemiologically relevant hosts or vectors and the processes that contribute to the maintenance of pathogens and spillover to humans. Here, we develop a generalisable next generation matrix modelling framework to better understand the transmission processes and hosts that have the greatest contribution to the maintenance of tick-borne diseases with the aim of improving the ecological evidence base and framing future research priorities for tick-borne diseases. Using this model we explore the relative contribution of different host groups and transmission routes to the maintenance of a neglected zoonotic tick-borne disease, Kyasanur Forest Disease Virus (KFD). The results highlight the potential importance of transovarial transmission and small mammals and birds in maintaining this disease. This contradicts previous hypotheses that primates play an important role influencing the distribution of infected ticks. There is also a suggestion that risk could vary across different habitat types. In light of these results we outline the key knowledge gaps for this system and future research priorities that would aid in informing effective interventions and control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.