Patients undergoing radiotherapy for head and neck cancer (HNC) often experience malnutrition and dehydration during treatment. As a result, some centres place PEG tubes prophylactically (pPEG) to prevent these negative consequences. However, recent research has suggested that pPEG use may negatively affect swallowing physiology, function and/or quality of life, especially in the long term. The purpose of this study was to systematically review the literature on pPEG use in HNC patients undergoing radiotherapy and to determine its impact on swallowing-related outcomes. The following electronic databases were searched for all relevant primary research published through February 24, 2014: AMED, CINAHL, the Cochrane Library, Embase, Healthstar, Medline, and PsycINFO. Main search terms included HNC, radiotherapy, deglutition disorders, feeding tube(s), and prophylactic or elective. References for all accepted papers were hand searched to identify additional relevant research. Methodological quality was assessed using Cochrane's Risk of Bias. At all levels, two blinded raters provided judgments. Discrepancies were resolved by consensus. The search retrieved 181 unique citations. Twenty studies met our inclusion criteria. Quality assessment revealed that all studies were at risk for bias due to non-randomized sampling and unreported or inadequate blinding. Ten studies demonstrated selection bias with significant baseline differences between pPEG patients and controls. Results regarding the frequency and severity of dysphagia and swallowing-related outcomes were varied and inconclusive. The impact of pPEG use on swallowing and swallowing-related outcomes remains unclear. Well-controlled, randomized trials are needed to determine if pPEG places patients at greater risk for developing long-term dysphagia.
Purpose
The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching.
Method
Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models.
Results
Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length.
Conclusions
Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response.
The results suggest that the suprahyoid muscles can have individualized roles in hyoid excursion during swallowing. Muscle balance may be important for identifying and treating hyolaryngeal dysfunction in patients with dysphagia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.