Suitable nest sites are a crucial habitat requirement of ground‐nesting bees, but empirical studies of fossorial solitary bee nesting ecology in the UK are few in number. This study used a citizen science approach to overcome the logistical and temporal barriers associated with this type of research and to gather data on the abiotic environment associated with the nesting aggregations of four fossorial solitary bee species in the UK. Three hundred and ninety‐four records were submitted by the public between March and November 2017. Sixty percent (236) of these records were verified as indicative of active nesting aggregations of the target species. Overall, the species in this study demonstrated the capacity to nest within a broad range of environmental variables. Although Colletes hederae (Schmidt and Westrich 1993) was often reported from sloped, unshaded sites, and Andrena fulva (Müller in Allioni 1766) was regularly associated with flat, shaded locations. This study demonstrated the efficacy of a citizen science approach in surmounting the intrinsic difficulties associated with studying solitary bee nest sites, which are both ephemeral and cryptic structures in the landscape.
SUMMARYGenes encoding Wnt ligands are crucial in body patterning and are highly conserved among metazoans. Given their conservation at the protein-coding level, it is likely that changes in where and when these genes are active are important in generating evolutionary variations. However, we lack detailed knowledge about how their deployment has diverged. Here, we focus on four Wnt subfamilies (Wnt2, Wnt5, Wnt7, and Wnt8) in mammalian and avian species, consisting of a paralogous gene pair in each, believed to have duplicated in the last common ancestor of vertebrates. We use three-dimensional imaging to capture expression patterns in detail and carry out systematic comparisons. We find evidence of greater divergence between these subgroup paralogues than the respective orthologues, consistent with some level of subfunctionalization/neofunctionalization in the common vertebrate ancestor that has been conserved. However, there were exceptions; in the case of chick Wnt2b, individual sites were shared with both mouse Wnt2 and Wnt2b. We also find greater divergence, between paralogues and orthologues, in some subfamilies (Wnt2 and Wnt8) compared to others (Wnt5 and Wnt7) with the more highly similar expression patterns showing more extensive expression in more structures in the embryo. Wnt8 genes were most restricted and most divergent. Major sites of expression for all subfamilies include CNS, limbs, and facial region, and in general there were more similarities in gene deployment in these territories with divergent patterns featuring more in organs such as heart and gut. A detailed comparison of gene expression patterns in the limb showed similarities in overall combined domains across species with notable differences that may relate to lineage-specific morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.