ABSTRACT. For birds in urban environments, the configuration of local habitat within the landscape may be as critical as the composition of the local habitat itself. We examined the relative importance of environmental attributes (e.g., tree cover, composition, and number of tree species) measured at different spatial scales in relation to urban bird species richness and abundance. We expected that some bird species and nesting guilds would have a closer association with landscape-level features (within 1000 m), such as proximity to large forested areas, than with local-scale habitat measures (within 50 m). To investigate this, avian community data were collected at 285 point-count stations in 1997 and 1998 along four roadside transects located in Vancouver and Burnaby, British Columbia, Canada. Transects (5-25 km in length) bisected three large parks (>324 ha) and proceeded along residential streets in urban and suburban areas. In total, 48 bird species were observed, including 25 common species. Species richness declined in relation to a gradient of increasing urbanization, as measured by local-and landscape-level habitat features. We further examined the significance and importance of local-vs. landscapelevel habitat attributes using logistic regression and found that both scales explained the presence/absence distributions of residential birds. Local-scale habitat features such as large coniferous trees, berry-producing shrubs, and freshwater streams were of particular importance in estimating the likelihood of finding bird species. Landscape measures, particularly forest cover (within 500 m) and park area (measured at different scales as a function of distance from point-count stations) significantly improved likelihood estimations based solely on local-scale habitat features. Our results suggest that both local-and landscape-scale resources were important in determining the distribution of birds in urban areas. Parks, reserves, and the surrounding residential areas should be integrated into urban planning and development designs to maintain resident avifauna and overall species diversity in urban environments.
Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity—affected by avoidance of habitat edges—should be driven by historical exposure to, and therefore species’ evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world’s tropical forests.
Habitat fragmentation studies have produced complex results that are challenging to synthesize. Inconsistencies among studies may result from variation in the choice of landscape metrics and response variables, which is often compounded by a lack of key statistical or methodological information. Collating primary datasets on biodiversity responses to fragmentation in a consistent and flexible database permits simple data retrieval for subsequent analyses. We present a relational database that links such field data to taxonomic nomenclature, spatial and temporal plot attributes, and environmental characteristics. Field assessments include measurements of the response(s) (e.g., presence, abundance, ground cover) of one or more species linked to plots in fragments within a partially forested landscape. The database currently holds 9830 unique species recorded in plots of 58 unique landscapes in six of eight realms: mammals 315, birds 1286, herptiles 460, insects 4521, spiders 204, other arthropods 85, gastropods 70, annelids 8, platyhelminthes 4, Onychophora 2, vascular plants 2112, nonvascular plants and lichens 320, and fungi 449. Three landscapes were sampled as long-term time series (>10 years). Seven hundred and eleven species are found in two or more landscapes. Consolidating the substantial amount of primary data available on biodiversity responses to fragmentation in the context of land-use change and natural disturbances is an essential part of understanding the effects of increasing anthropogenic pressures on land. The consistent format of this database facilitates testing of generalizations concerning biologic responses to fragmentation across diverse systems and taxa. It also allows the re-examination of existing datasets with alternative landscape metrics and robust statistical methods, for example, helping to address pseudo-replication problems. The database can thus help researchers in producing broad syntheses of the effects of land use. The database is dynamic and inclusive, and contributions from individual and large-scale data-collection efforts are welcome.
Terrestrial and aquatic systems are geographically connected, yet these systems are typically studied independently of each other. This approach omits a large amount of ecological information as landscapes are best described as mosaics in watersheds. Species Accumulation Curves (SACs) that incorporate sampling effort are familiar models of how biodiversity will change when landcovers are lost. In land-based systems, the consistent pattern of increased species richness with increasing number of sites sampled is an ecological norm. In freshwater systems, fish species discharge relationships are analogous to species-area relationships in terrestrial systems, but the relationship between terrestrial species and discharge remains largely unexplored. Although some studies investigate the effect of terrestrial systems on neighboring aquatic species, less work has been done on exploring the effect of aquatic systems on terrestrial species. Additionally, creating statistical models to observe these interactions need to be explored further. Using data from the Ontario Breeding Bird Atlas (2001–2005), we created bird SACs to explore how increases in diversity with sites sampled varies with watershed position on the Canadian side of the Great Lakes Basin (GLB). The mosaic landscape of the GLB was characterized using six majority land cover classes at a 15 m resolution. This work shows that rates of species accrual and potential maximum species richness vary as a function of watershed position, underlying land cover, and the Ecoregion in which sampling was performed. We also found that Urban landcover has the potential to retain relatively high levels of species richness, which is further modified by Ecoregion and watershed position. Through our ‘world building,’ we believe that we can increase knowledge around the importance of land-water interactions and further the goals of viewing landscapes as mosaic watersheds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.