Biomimetic models that contain elements of photosynthesis are fundamental in the development of synthetic systems that can use sunlight to produce fuel. The critical task consists of running several rounds of light-induced charge separation, which is required to accumulate enough redox equivalents at the catalytic sites for the target chemistry to occur. Long-lived first charge-separated state and distinct electronic signatures for the sequential charge accumulated species are essential features to be able to track these events on a spectroscopic ground. Herein, we use a double-excitation nanosecond pump-pump-probe experiment to interrogate two successive rounds of photo-induced electron transfer on a molecular dyad containing a naphthalene diimide (NDI) linked to a [Ru(bpy) ] (bpy=bipyridine) chromophore by using a reversible electron donor. We report an unprecedented long-lived two-electron charge accumulation (t=200 μs).
Biomimetic models that contain elements of photosynthesis are fundamental in the development of synthetic systems that can use sunlight to produce fuel. The critical task consists of running several rounds of light‐induced charge separation, which is required to accumulate enough redox equivalents at the catalytic sites for the target chemistry to occur. Long‐lived first charge‐separated state and distinct electronic signatures for the sequential charge accumulated species are essential features to be able to track these events on a spectroscopic ground. Herein, we use a double‐excitation nanosecond pump–pump–probe experiment to interrogate two successive rounds of photo‐induced electron transfer on a molecular dyad containing a naphthalene diimide (NDI) linked to a [Ru(bpy)3]2+ (bpy=bipyridine) chromophore by using a reversible electron donor. We report an unprecedented long‐lived two‐electron charge accumulation (t=200 μs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.