We have previously shown that ICAM-1-deficient mice were resistant to lymphoma dissemination of intravenously injected 164T2 lymphoma cells. Highly aggressive variants of this cell line, however, could overcome this resistance. To discern the complex pattern of gene expression involved in the evolution of aggressiveness in lymphoma cells, we compared the transcriptome of 164T2 cells with that of their aggressive variants using cDNA arrays. We identified several genes that were differentially expressed in nonmetastatic lymphoma cells and their metastatic variants. Galectin-7, associated with the development of chemically induced mammary carcinoma, was one such gene whose expression was significantly upregulated. We showed that it was constitutively expressed in aggressive variants, at both mRNA and protein levels. Galectin-7 expression in aggressive lymphoma cells was induced upon in vivo selection in several organs, including the thymus, the spleen and kidneys. We also showed that treatment of nonaggressive lymphoma cells with 5-aza-2 0 -deoxycytidine was sufficient to induce galectin-7 gene expression. This report is the first to show that galectin-7 is expressed in aggressive lymphoma.
A mechanism by which control DNA elements regulate transcription over large linear genomic distances is by achieving close physical proximity with genes, and looping of the intervening chromatin paths. Alterations of such regulatory ‘chromatin looping’ systems are likely to play a critical role in human genetic disease at large. Here, we studied the spatial organization of a ≈790 kb locus encompassing the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Dysregulation of CFTR is responsible for cystic fibrosis, which is the most common lethal genetic disorder in Caucasian populations. CFTR is a relatively large gene of 189 kb with a rather complex tissue-specific and temporal expression profile. We used chromatin conformation at the CFTR locus to identify new DNA sequences that regulate its transcription. By comparing 5C chromatin interaction maps of the CFTR locus in expressing and non-expressing human primary cells, we identified several new contact points between the CFTR promoter and its surroundings, in addition to regions featuring previously described regulatory elements. We demonstrate that two of these novel interacting regions cooperatively increase CFTR expression, and suggest that the new enhancer elements located on either side of the gene are brought together through chromatin looping via CTCF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.