Teaching is a form of high-fidelity social learning that promotes human cumulative culture. Although recently documented in several nonhuman animals, teaching is rare among primates. In this study, we show that wild chimpanzees (Pan troglodytes troglodytes) in the Goualougo Triangle teach tool skills by providing learners with termite fishing probes. Tool donors experienced significant reductions in tool use and feeding, while tool recipients significantly increased their tool use and feeding after tool transfers. These transfers meet functional criteria for teaching: they occur in a learner’s presence, are costly to the teacher, and improve the learner’s performance. Donors also showed sophisticated cognitive strategies that effectively buffered them against potential costs. Teaching is predicted when less costly learning mechanisms are insufficient. Given that these chimpanzees manufacture sophisticated, brush-tipped fishing probes from specific raw materials, teaching in this population may relate to the complexity of these termite-gathering tasks.
Cumulative culture is a transformative force in human evolution, but the social underpinnings of this capacity are debated. Identifying social influences on how chimpanzees acquire tool tasks of differing complexity may help illuminate the evolutionary origins of technology in our own lineage. Humans routinely transfer tools to novices to scaffold their skill development. While tool transfers occur in wild chimpanzees and fulfill criteria for teaching, it is unknown whether this form of helping varies between populations and across tasks. Applying standardized methods, we compared tool transfers during termite gathering by chimpanzees in the Goualougo Triangle, Republic of Congo, and in Gombe, Tanzania. At Goualougo, chimpanzees use multiple, different tool types sequentially, choose specific raw materials, and perform modifications that improve tool efficiency, which could make it challenging for novices to manufacture suitable tools. Termite gathering at Gombe involves a single tool type, fishing probes, which can be manufactured from various materials. Multiple measures indicated population differences in tool-transfer behavior. The rate of transfers and probability of transfer upon request were significantly higher at Goualougo, while resistance to transfers was significantly higher at Gombe. Active transfers of tools in which possessors moved to facilitate possession change upon request occurred only at Goualougo, where they were the most common transfer type. At Gombe, tool requests were typically refused. We suggest that these population differences in tool-transfer behavior may relate to task complexity and that active helping plays an enhanced role in the cultural transmission of complex technology in wild apes.
Objectives: Acquiring tool-assisted foraging skills can potentially improve dietary quality and increase fitness for wild chimpanzees (Pan troglodytes). In contrast to chimpanzees in East and West Africa, chimpanzees in the Congo Basin use tool sets and brush-tipped fishing probes to gather termites. We investigated the ontogeny of these tool skills in chimpanzees of the Goualougo Triangle, Republic of Congo, and compared it to that for chimpanzees at Gombe, Tanzania. We assessed whether chimpanzees acquired simple tool behaviors and single tool use before more complex actions and sequential use of multiple tool types. Materials and Methods: Using a longitudinal approach, we scored remote video footage to document the acquisition of termite-gathering critical elements for 25 immature chimpanzees at Goualougo. Results: All chimpanzees termite fished by 2.9 years but did not manufacture brushtipped probes until an average of 4.3 years. Acquisition of sequential tool use extended into juvenility and adolescence. While we did not detect significant sex differences, most critical elements except tool manufacture were acquired slightly earlier by females. Discussion: These findings contrast with Gombe, where chimpanzees learn to both use and make fishing probes between ages 1.5-3.5 and acquire the complete task by age 5.5. Differences between sites could reflect tool material selectivity and design complexity, the challenge of sequential tool behaviors, and strength requirements of puncturing subterranean termite nests at Goualougo. These results illustrate how task complexity may influence the timing and sequence of skill acquisition, improving models of the ontogeny of tool behavior among early hominins who likely used complex, perishable technologies.
Although the phenomenon of termite fishing by chimpanzees (Pan troglodytes) has historical and theoretical importance for primatology, we still have a limited understanding of how chimpanzees accomplish this activity, and in particular, about details of skilled actions and the nature of individual variation in fishing techniques. We examined movements, hand positions, grips, and other details from remote video footage of seven adult and subadult female chimpanzees using plant probes to extract Macrotermes muelleri termites from epigeal nests. Six chimpanzees used exclusively one hand (left or right) to grip the probe during termite fishing. All chimpanzees used the same repertoire of actions to insert, adjust, and withdraw the probe but differed in the frequency of use of particular actions. Chimpanzees have been described as eating termites in two ways-directly from the probe or by sweeping them from the probe with one hand. We describe a third technique: sliding the probe between the digits of one stationary hand as the probe is extracted from the nest. The sliding technique requires complementary bimanual coordination (extracting with one hand and grasping lightly with the other, at the same time). We highlight the importance of actions with two hands-one gripping, one assisting-in termite fishing and discuss how probing techniques are correlated with performance. Additional research on digital function and on environmental, organismic, and task constraints will further reveal manual dexterity in termite fishing.
Primates manufacture and use a range of tools for a variety of purposes and exhibit some of the most complex tool use among nonhumans. Chimpanzees and some populations of orangutans, capuchins, and macaques are generally considered to be the most skilled nonhuman tool users and habitually use tools in the wild. A much larger number of primates are capable of tool use but rarely express these behaviors in natural settings. Identifying the factors that are associated with the variable expression of tool behavior across the Primate order and understanding the adaptive basis of primate tool use are ongoing areas of scientific inquiry. Studies of primate tool use provide a unique vantage point on the behavioral ecology, cognition, and culture of nonhumans while also producing critical insights into the evolutionary processes associated with the emergence and flourishing of complex technology within the hominin lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.