Populations of cortical neurons flexibly perform different functions; for the primary motor cortex (M1) this means a rich repertoire of motor behaviors. We investigate the flexibility of M1 movement control by analyzing neural population activity during a variety of skilled wrist and reach-to-grasp tasks. We compare across tasks the neural modes that capture dominant neural covariance patterns during each task. While each task requires different patterns of muscle and single unit activity, we find unexpected similarities at the neural population level: the structure and activity of the neural modes is largely preserved across tasks. Furthermore, we find two sets of neural modes with task-independent activity that capture, respectively, generic temporal features of the set of tasks and a task-independent mapping onto muscle activity. This system of flexibly combined, well-preserved neural modes may underlie the ability of M1 to learn and generate a wide-ranging behavioral repertoire.
Whether one is delicately placing a contact lens on the surface of the eye or lifting a heavy weight from the floor, the motor system must produce a wide range of forces under different dynamical loads. How does the motor cortex, with neurons that have a limited activity range, function effectively under these widely varying conditions? In this study, we explored the interaction of activity in primary motor cortex (M1) and muscles (electromyograms, EMGs) of two male rhesus monkeys for wrist movements made during three tasks requiring different dynamical loads and forces. Despite traditionally providing adequate predictions in single tasks, in our experiments, a single linear model failed to account for the relation between M1 activity and EMG across conditions. However, a model with a gain parameter that increased with the target force remained accurate across forces and dynamical loads. Surprisingly, this model showed that a greater proportion of EMG changes were explained by the nonlinear gain than the linear mapping from M1. In addition to its theoretical implications, the strength of this nonlinearity has important implications for brain-computer interfaces (BCIs). If BCI decoders are to be used to control movement dynamics (including interaction forces) directly, they will need to be nonlinear and include training data from broad data sets to function effectively across tasks. Our study reinforces the need to investigate neural control of movement across a wide range of conditions to understand its basic characteristics as well as translational implications. NEW & NOTEWORTHY We explored the motor cortex-to-electromyogram (EMG) mapping across a wide range of forces and loading conditions, which we found to be highly nonlinear. A greater proportion of EMG was explained by a nonlinear gain than a linear mapping. This nonlinearity allows motor cortex to control the wide range of forces encountered in the real world. These results unify earlier observations and inform the next-generation brain-computer interfaces that will control movement dynamics and interaction forces.
Brain decoders use neural recordings to infer a user's activity or intent. To train a decoder, we generally need infer the variables of interest (covariates) using simultaneously measured neural activity. However, there are many cases where this approach is not possible. Here we overcome this problem by introducing a fundamentally new approach for decoding called distribution alignment decoding (DAD). We use the statistics of movement, much like cryptographers use the statistics of language, to find a mapping between neural activity and motor variables. DAD learns a linear decoder which aligns the distribution of its output with the typical distribution of motor outputs by minimizing their KL-divergence. We apply our approach to a two datasets collected from the motor cortex of non-human primates (NHPs): a reaching task and an isometric force production task. We study the performance of DAD and find regimes where DAD provides comparable and in some cases, better performance than a typical supervised decoder. As DAD does not rely on the ability to record motor-related outputs, it promises to broaden the set of potential applications of brain decoding.
Brain decoders use neural recordings to infer a user's activity or intent. To train a decoder, we generally need infer the variables of interest (covariates) using simultaneously measured neural activity. However, there are many cases where this approach is not possible. Here we overcome this problem by introducing a fundamentally new approach for decoding called distribution alignment decoding (DAD). We use the statistics of movement, much like cryptographers use the statistics of language, to find a mapping between neural activity and motor variables. DAD learns a linear decoder which aligns the distribution of its output with the typical distribution of motor outputs by minimizing their KL-divergence. We apply our approach to a two datasets collected from the motor cortex of non-human primates (NHPs): a reaching task and an isometric force production task. We study the performance of DAD and find regimes where DAD provides comparable and in some cases, better performance than a typical supervised decoder. As DAD does not rely on the ability to record motor-related outputs, it promises to broaden the set of potential applications of brain decoding..
FINE cuffs can serve as a viable supplement to intramuscular electrodes in FES systems, where they can better activate intrinsic and extrinsic muscles with lower currents and less extensive surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.