Background and Purpose-Recently, the Mobile Stroke Unit (MSU) concept was introduced in Germany demonstrating prehospital treatment of more patients within the first hour of symptom onset. However, the details and complexities of establishing such a program in the United States are unknown. We describe the steps involved in setting up the first MSU in the United States. Methods-Implementation included establishing leadership, fund-raising, purchase and build-out, knitting a collaborative consortium of community stakeholders, writing protocols to ensure accountability, radiation safety, purchasing supplies, licensing, insurance, establishing a base station, developing a communication plan with city Emergency Medical Services, Emergency Medical Service training, staffing, and designing a research protocol. Results-The MSU was introduced after ≈1 year of preparation. Major obstacles to establishing the MSU were primarily obtaining funding, licensure, documenting radiation safety protocols, and establishing a smooth communication system with Emergency Medical Services. During an 8 week run-in phase, ≈2 patients were treated with recombinant tissue-type plasminogen activator per week, one-third within 60 minutes of symptom onset, with no complications. A randomized study to determine clinical outcomes, telemedicine reliability and accuracy, and cost effectiveness was formulated and has begun. Conclusion-The first MSU in the United States has been introduced in Houston, TX. The steps needed to accomplish this are described.
Background and Purpose-Faster treatment with intravenous tissue-type plasminogen activator (tPA) is likely to improve outcomes. Optimizing prehospital triage by mobile stroke units (MSUs) may speed treatment times. The Benefits of Stroke Treatment Delivered Using a Mobile Stroke Unit (BEST-MSU) study was launched in May 2014 using the first MSU in the United States to compare stroke management using an MSU versus standard management (SM). Herein, we describe the results of the prespecified, nonrandomized run-in phase designed to obtain preliminary data on study logistics. Methods-The run-in phase consisted of 8 MSU weeks when all-patient care occurred on the MSU and 2 SM weeks when the MSU nurse met personnel on scene or at the emergency department to ensure comparability with MSU patients.Telemedicine was independently performed in 9 MSU cases. Results-Of 130 alerts, 24 MSU and 2 SM patients were enrolled. Twelve of 24 MSU patients received tPA on board; 4 were treated within 60 minutes of last seen normal, and 4 went on to endovascular treatment. There were no hemorrhagic complications. Four had primary intracerebral hemorrhage. Agreement on tPA eligibility between the onsite and telemedicine physician was 90%. Conclusions-The run-in phase provided a tPA treatment rate of 1.5 patients per week, assured us that treatment within 60 minutes of onset is possible, and enabled enrollment of patients on SM weeks. We also recognized the opportunity to assess the effect of the MSU on endovascular treatment and intracerebral hemorrhage. Challenges include the need to control biased patient selection on MSU versus SM weeks and establish inter-rater agreement for tPA treatment using telemedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.