Objective To determine the inflammatory effects of time-dependent exposure to the hypobaric environment of simulated aeromedical evacuation following traumatic brain injury (TBI). Methods Mice were subjected to a blunt TBI or sham injury. Righting reflex response (RRR) time was assessed as an indicator of neurologic recovery. Three or 24 h (Early and Delayed groups, respectively) after TBI, mice were exposed to hypobaric flight conditions (Fly) or ground-level control (No Fly) for 5 h. Arterial blood gas samples were obtained from all groups during simulated flight. Serum and cortical brain samples were analyzed for inflammatory cytokines after flight. Neuron specific enolase (NSE) was measured as a serum biomarker of TBI severity. Results TBI resulted in prolonged RRR time compared with sham injury. After TBI alone, serum levels of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC) were increased by 6 h post-injury. Simulated flight significantly reduced arterial oxygen saturation levels in the Fly group. Post-injury altitude exposure increased cerebral levels of IL-6 and macrophage inflammatory protein-1α (MIP-1α), as well as serum NSE in the Early but not Delayed Flight group compared to ground-level controls. Conclusions The hypobaric environment of aero-medical evacuation results in significant hypoxia. Early, but not delayed, exposure to a hypobaric environment following TBI increases the neuroinflammatory response to injury and the severity of secondary brain injury. Optimization of the post-injury time to fly using serum cytokine and biomarker levels may reduce the potential secondary cerebral injury induced by aeromedical evacuation.
Introduction Intestinal epithelial cells represent an important component of innate immunity, with sophisticated responses to inflammatory stimuli. The manner in which intestinal epithelial cell polarity affects responses to inflammatory stimuli is largely unknown. We hypothesized that polarized intestinal epithelial cells exhibit a bidirectional inflammatory response dependent upon the location of the stimulus. Methods Caco-2 cells were grown on semi-permeable inserts in a dual-compartment culture system and treated with tumor necrosis factor-α (TNF-α; 100 ng/ml) or serum-free media in the apical or basolateral chamber. Interleukin-8 (IL-8) production in each chamber was measured by enzyme-linked immunosorbent assay. To determine receptor specificity, anti-TNF receptor antibodies were added to the apical or basolateral chamber. Results Basolateral stimulation with TNF-α resulted in increased apical and basolateral IL-8 production. Apical TNF-α stimulation resulted in increased apical, but not basolateral IL-8 production. Receptor blockade suggested TNF receptor 1 involvement on both apical and basolateral membranes, while TNF receptor 2 was only active on the apical membrane. Conclusion Polarized intestinal epithelial cells respond to TNF-α stimulation with focused, directional secretion of the proinflammatory cytokine IL-8. These findings are important because they suggest that intestinal epithelial cells are capable of organizing their response to inflammatory signals and producing inflammatory mediators in a bidirectional, vectorial fashion.
Intestinal failure is common in patients with septic shock, with dysfunction of the gut often manifesting as both a cause and consequence of their critical illness. Most studies investigating the pathogenesis of intestinal failure focus on the systemic aspect, although few data examine the inflammatory signaling in the intestinal lumen. Having previously demonstrated apical/luminal chemokine secretion in an in vitro model of intestinal inflammation, we hypothesized that endotoxemia would induce secretion of proinflammatory chemokines into the intestinal lumen. In addition, we examined the contribution of these mediators to intestinal dysmotility. C57/BL6 male mice were injected intraperitoneally with LPS. Serum, intestinal tissue, and intestinal luminal contents were harvested for cytokine analysis. For intestinal motility studies, a transit assay was performed after oral gavage of chemokines. Caco-2 cells grown on Transwell culture inserts were used to examine the role of the intestinal epithelium in chemokine secretion. Monocyte chemoattractant protein 1 (MCP-1/CCL2) and macrophage-derived chemokine (MDC/CCL22) were secreted into the lumen of multiple segments of the gut during endotoxemia in mice. In vitro work showed that the intestinal epithelium participates in monocyte chemoattractant protein 1 and MDC secretion and expresses the CCR2 and CCR4 receptors for these chemokines. Intestinal transit studies show that oral gavage of MDC results in impaired gut motility. This study demonstrates that the intestinal lumen is an active compartment in the gut's inflammatory response. Proinflammatory chemokines are secreted into the intestinal lumen during endotoxemia. These intraluminal chemokines contribute to intestinal dysmotility, complicating intestinal failure.
Background Intestinal injury is a consequence of hemorrhagic shock and resuscitation. The intestinal mucosa has been shown to respond to ischemia/reperfusion injury with production of inflammatory mediators. Previous work in our laboratory indicates that intestinal epithelial cells secrete proinflammatory cytokines in the direction of both the lamina propria and intestinal lumen. The ability of the intestinal mucosa to transmit inflammatory signals into the gut lumen after hemorrhagic shock is unknown. We hypothesized that hemorrhagic shock results in secretion of proinflammatory cytokines into the gut lumen. Methods Male C57/Bl6 mice underwent femoral artery cannulation and hemorrhage to a systolic blood pressure of 20 mmHg for 1 h, then resuscitation with lactated Ringer’s (LR) solution. Sham animals were cannulated only. Mice were decannulated and sacrificed at intervals. Stool and succus were removed from intestinal segments, weighed, and placed into buffer solution. Specimens were analyzed via enzyme-linked immunosorbent assay (ELISA). Results Compared with sham-injured mice, hemorrhagic shock resulted in increased intestinal luminal cytokines. At 3 h after injury, elevated levels of IL-6 were found in the cecal stool. At 6 h after injury, TNFα, IL-6, and MIP-2 were significantly elevated in the cecal stool, and IL-6 and MIP-2 were significantly elevated in the distal colonic stool. Conclusions Hemorrhagic shock results in secretion of proinflammatory cytokines into the intestinal lumen. These findings suggest that the intestinal mucosa may transmit and receive signals in a paracrine fashion via the gut lumen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.