Increased Ser phosphorylation of tau microtubule-associated protein in the brain is an early feature of Alzheimer's disease (AD) that precedes progression of the disease to frank neuronal disruption. We demonstrate that bradykinin (BK) B2 receptor activation leads to selective Ser phosphorylation of tau in skin fibroblasts from persons who have or will develop AD due to Presenilin 1 mutations or Trisomy 21, but not in skin fibroblasts from normal individuals at any age. The increased signal transduction in AD fibroblasts that culminates in tau Ser phosphorylation reflects modification of the G protein-coupled BK B2 receptors themselves. Both the BK B2 receptor modification and BK-mediated tau Ser phosphorylation are dependent on activation of protein kinase C and can be detected in fibroblasts from persons with Trisomy 21 two decades before the characteristic onset of AD. This dysregulated signaling cascade in AD may thus be expressed throughout life as an aberrant pathway in peripheral tissues more accessible than brain for molecular analysis. The sites of greatest BK B2 receptor expression in brain overlap with those areas displaying the earliest pathology in the course of AD, suggesting that BK receptor pathway dysfunction may be a molecular signature yielding information about the pathogenesis of AD.
Several major histocompatibility complex class II (MHC II) complexes with known minimal immunogenic peptides have now been solved by X-ray crystallography. Specificity pockets within the MHC II binding groove provide distinct peptide contacts that influence peptide conformation and define the binding register within different allelic MHC II molecules. Altering peptide ligands with respect to the residues that contact the T-cell receptor (TCR) can drastically change the nature of the ensuing immune response. Here, we provide an example of how MHC II (I-A) molecules may indirectly effect TCR contacts with a peptide and drive functionally distinct immune responses. We modeled the same immunogenic 12-amino acid peptide into the binding grooves of two allelic MHC II molecules linked to distinct cytokine responses against the peptide. Surprisingly, the favored conformation of the peptide in each molecule was distinct with respect to the exposure of the N- or C-terminus of the peptide above the MHC II binding groove. T-cell clones derived from each allelic MHC II genotype were found to be allele-restricted with respect to the recognition of these N- vs. C-terminal residues on the bound peptide. Taken together, these data suggest that MHC II alleles may influence T-cell functions by restricting TCR access to specific residues of the I-A-bound peptide. Thus, these data are of significance to diseases that display genetic linkage to specific MHC II alleles, e.g. type 1 diabetes and rheumatoid arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.