Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.
Oxytocin is currently being considered as a novel therapeutic for anxiety disorders due to its ability to promote affiliative behaviors. In the nucleus accumbens (NAc) activation of oxytocin receptors (OTR) promotes social approach (time spent near an unfamiliar individual). Here, we show that stressful social experiences reduce the expression of NAc OTR mRNA, coinciding with decreases in social approach. Social stressors also increase social vigilance, characterized as orienting to an unfamiliar individual without approaching. Vigilance is a key component of behavioral inhibition, a personality trait that is a risk factor for anxiety disorders. To understand whether NAc OTR can modulate both social approach and vigilance, we use pharmacological approaches to assess the impact of activation or inhibition of NAc OTR downstream pathways on these behaviors. First, we show that in unstressed male and female California mice, inhibition of OTR by an unbiased antagonist (L-368,899) reduces social approach but does not induce social vigilance. Next, we show that infusion of Atosiban, an OTR-Gq antagonist/OTR-Gi agonist, has the same effect in unstressed females. Finally, we show that Carbetocin, a biased OTR-Gq agonist, increases social approach in stressed females while simultaneously inhibiting social vigilance. Taken together these data suggest that OTR in the NAc differentially modulate social approach and social vigilance, primarily through an OTR-Gq mechanism. Importantly, pharmacological inhibition of OTR alone is insufficient to induce vigilance in unstressed mice, suggesting that mechanisms modulating social approach may be distinct from mechanisms modulating social vigilance.
There is growing evidence that kappa opioid receptor (KOR) antagonists could be a useful class of therapeutics for treating depression and anxiety. However, the overwhelming majority of preclinical investigations examining the behavioral effects of KOR antagonists have been in male rodents. Here, we examined the effects of the long-acting KOR antagonist nor-binaltophimine (norBNI) on immobility in the forced swim test in males and females of two different rodent species (C57Bl/6J and California mice). Consistent with previous reports, norBNI (10 mg/kg) decreased immobility in the forced swim test for male C57Bl/6J and California mice. Surprisingly, dose–response studies in female C57Bl/6J and California mice showed that norBNI did not reduce immobility. Pharmacokinetic analyses showed that metabolism and brain concentrations of norBNI were similar in male and female C57Bl/6J. In the nucleus accumbens of male but not female C57Bl/6J, norBNI increased phosphorylation of c-Jun N-terminal kinase (pJNK), a putative mechanism for norBNI action. However, no differences in pJNK were observed in male or female California mice. Together, these results suggest that immobility in the forced swim test is less dependent on endogenous KOR signaling in female rodents and highlight the importance of examining the effects of possible therapeutic agents in both males and females.
Kappa opioid receptors (KOR) are considered to be a promising therapeutic target for stress-induced psychiatric disorders such as anxiety and depression. Preclinical data show that KOR antagonists have greater efficacy if administered before stressful experiences as opposed to afterwards. However, almost all of these studies use long-acting antagonists, leaving it unclear whether inhibition of KOR after stress is required for efficacy. Here we show that administration of the short-acting KOR antagonist AZ-MTAB before episodes of social defeat stress block the induction of anhedonia (both males and females) and social avoidance responses (females) that persist two weeks after stress. In both males and females pre-stress AZ-MTAB treatment also blunted anticipatory autogrooming behavior immediately prior to the third episode of defeat. In contrast when AZ-MTAB was administered two weeks after defeat (immediately before behavior testing) in female California mice, it was ineffective at reversing anhedonia and social avoidance. These results suggest that short-acting KOR antagonists may have greater therapeutic potential if administered before exposure to psychosocial stressors.
Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a social stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knock-down prevented stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extra-hypothalamic oxytocin neurons play a key role in controlling stress-induced social anxiety behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.