This paper presents the results of a study comparing student learning in an inquiry-based and a traditional course in biotransport. Collaborating learning scientists and biomedical engineers designed and implemented an inquiry-based method of instruction that followed learning principles presented in the National Research Council report "How People Learn" (HPL). In this study, the intervention group was taught a core biomedical engineering course in biotransport following the HPL method. The control group was taught by traditional didactic lecture methods. A primary objective of the study was to identify instructional methods that facilitate the early development of adaptive expertise (AE). AE requires a combination of two types of engineering skills: subject knowledge and the ability to think innovatively in new contexts. Therefore, student learning in biotransport was measured in two dimensions: A pre and posttest measured knowledge acquisition in the domain and development of innovative problem-solving abilities. HPL and traditional students' test scores were compared. Results show that HPL and traditional students made equivalent knowledge gains, but that HPL students demonstrated significantly greater improvement in innovative thinking abilities. We discuss these results in terms of their implications for improving undergraduate engineering education.
This chapter describes a model for continuous development of adaptive expertise, including growth along the dimensions of innovation and knowledge, examined in the context of a biotransport course in biomedical engineering. Students improved on both knowledge and innovation, moving along a continuum toward adaptive expertise.
This study compares gender differences on Likert scale pre/post assessments of engineering interest, identity, and knowledge in three "traditional" introductory function-and task-oriented robotics courses and two biomedical robotics courses. In addition, the STEM Academy at a local high school is surveyed to identify their preferences given six hypothetical robotics curricula: three traditional function-and task-oriented courses and three contextualized courses consistent with helping society and gender-friendly messaging. The students are asked to rate each hypothetical course from least to most preferred. ANOVA is used to test our hypothesis that the biomedical robotics curriculum will result in higher gains in engineering interest and identity for all students, especially for the girls in the sample. This study adds to the literature base by empirically testing the role that the design problems and contexts we choose as engineering educators plays in the gender inclusiveness of K-12 engineering education efforts.
The goal of this study was to examine how the use of a new instructional model is related to changes in middle school students' engineering identity. The intent of this instructional model, which is called argument-driven engineering (ADE), is to give students opportunities to design and critique solutions to meaningful problems using the core ideas and practices of science and engineering. The model also reflects current recommendations found in the literature for supporting the development or maintenance of engineering identity. This study took place in the context of an eighth-grade science classroom in order to explore how middle school students' engineering identities change over time as they become more familiar with engineering core ideas and practices. One hundred students participated in this study. These students completed three design tasks during the school year that were created using the ADE instructional model. These students also completed a survey that was designed to measure two important aspects of an engineering identity (recognition and interest) at three different time points. The results of a hierarchical linear modeling analysis suggest that students' ideas about how they view themselves and others view them in terms of engineering did not change over time and their reported interest decreased from one survey to the next. The difficulty of the design tasks and the ways teachers enacted the instructional model are proposed as potential explanations for this counterintuitive finding.
Christina is a doctoral student in the STEM Education program at the University of Texas at Austin. After earning a B.S.Ed. in Secondary Education-Biology through the NAUTeach program at Northern Arizona University, she taught in several capacities in K-12 schools. Christina then began teaching community college students part-time. Through this position, she was encouraged to earn her Master of Arts in Science Teaching, also at Northern Arizona University. During this time, Christina discovered a love for research, prompting her to pursue a Ph.D. She is a recipient of both a Graduate School Recruitment Fellowship and a Texas New Scholar's Fellowship. She is a member of the National Science Teachers Association, and currently serves as the STEM Education representative to the Graduate Student Assembly at UT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.