The direct characterization of exoplanetary systems with high-contrast imaging is among the highest priorities for the broader exoplanet community. As large space missions will be necessary for detecting and characterizing exo-Earth twins, developing the techniques and technology for direct imaging of exoplanets is a driving focus for the community. For the first time, JWST will directly observe extrasolar planets at mid-infrared wavelengths beyond 5 μm, deliver detailed spectroscopy revealing much more precise chemical abundances and atmospheric conditions, and provide sensitivity to analogs of our solar system ice-giant planets at wide orbital separations, an entirely new class of exoplanet. However, in order to maximize the scientific output over the lifetime of the mission, an exquisite understanding of the instrumental performance of JWST is needed as early in the mission as possible. In this paper, we describe our 55 hr Early Release Science Program that will utilize all four JWST instruments to extend the characterization of planetary-mass companions to ∼15 μm as well as image a circumstellar disk in the mid-infrared with unprecedented sensitivity. Our program will also assess the performance of the observatory in the key modes expected to be commonly used for exoplanet direct imaging and spectroscopy, optimize data calibration and processing, and generate representative data sets that will enable a broad user base to effectively plan for general observing programs in future Cycles.
An Adaptive secondary mirror (ASM) allows for the integration of adaptive optics (AO) into the telescope itself. Adaptive secondary mirrors, based on hybrid variable reluctance (HVR) actuator technology, developed by TNO, provide a promising path to telescope-integrated AO. HVR actuators have the advantage of allowing mirrors that are stiffer, more power efficient, and potentially less complex than similar, voice-coil based ASM's. We are exploring the application of this technology via a laboratory testbed that will validate the technical approach. In parallel, we are developing conceptual designs for ASMs at several telescopes including the Automated Planet Finder Telescope (APF) and for Keck Observatory. An ASM for APF has the potential to double the light through the slit for radial velocity measurements, and dramatically improved the image stability. An ASM for WMKO enables ground layer AO correction and lower background infrared AO observations, and provides for more flexible deployment of instruments via the ability to adjust the location of the Cassegrain focus.
SCALES (Slicer Combined with an Array of Lenslets for Exoplanet Spectroscopy) is a 2 -5 micron high-contrast lenslet-based integral field spectrograph (IFS) designed to characterize exoplanets and their atmospheres. Like other lenslet-based IFSs, SCALES produces a short micro-spectrum of each lenslet's micro-pupil. We have developed an image slicer that sits behind the lenslet array & dissects and rearranges a subset of micro-pupils into a pseudo-slit. The combination lenslet array and slicer (or slenslit) allows SCALES to produce much longer spectra, thereby increasing the spectral resolution by over an order of magnitude and allowing for comparisons to atmospheric modeling at unprecedented resolution. This proceeding describes the design and performance of the slenslit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.