The present work aimed to investigate the effects of mechanical impedance of wax layer (wax discs were installed 0.1 m deep) on root system deepening of citrus seedlings growing in columns with sand and nutrient solution. Two planting systems were evaluated: direct seeding (DS) and planting of seedlings (PS) (plants obtained from seed germination in tubes). Two experiments were carried out in a sequence: first to investigate the wax layer resistance levels (0.14 to 2.7 MPa) on root system penetration and two planting systems (DS and PS). The second evaluated the root and plant development of the two planting systems and two resistance of wax layer to root penetration: control (0.14 MPa) and a strong wax layer (1.06 MPa). The experimental design was randomized blocks, the first experiment in a 2 × 4 factorial scheme with 4 replications and the second a 2 × 2 factorial scheme with 6 replications. Resistance level ≥ 1.52 MPa (60% hard wax and 40% soft wax) completely limited root penetration in the artificial strong layer. The presence of strong wax disc reduced the citrus root system in both planting systems. PS was associated with greater root and shoot vigor, indicating that, in soils with good physical structure and porosity or allowing root deepening beyond the cohesive layer, this planting system is fully adequate, despite the possible benefit of not cutting the pivoting root in direct sowing.
The hydraulic conductivity of a soil is the main parameter that determines its drainage capacity. However, its determination is of great importance for sizing in agricultural drainage systems. To determine the hydraulic conductivity of the soil in the presence of water table through the Auger-Hole. The experiment was carried out at Embrapa Manioc and Fruticulture (EMBRAPA), located in the municipality of Cruz das Almas-BA. In order to estimate the hydraulic conductivity, several empirical formulas have been proposed, such as Ernst's, which is the model that most closely approximates the soil situation studied. The hydraulic conductivity values for the studied soil obtained by the Auger-Hole method ranged from 0.24821 to 0.28544 m day -1 . With an average value for hydraulic conductivity of 0.266835 m day-¹, being considered slow. The soil under analysis is classified in slow saturated hydraulic conductivity. The Auger-Hole method proved to be practical, fast, safe and easy to handle.
The Physalisgenus is composed of species with economic andmedicinal importance, its cultivation is expanding in Brazil,andis neededresearch on the performance of species in different regions of the country. Thus, the objective was to characterize the growth, development and yield of Physalis angulataand Physalis ixocarpaspecies cultivated in three sowing seasons in Bahia's semiarid region.The days after sowingwere determined for the occurrence of vegetative and reproductive stages, and the length and diameter of the main branch were evaluated weekly. At the end of cultivation, the number and total weight of fruits per plant were determined. The plants sown in April showed the best results, as floweringprecocity, higher productivity and growth close to other producing regions, which is the best period for the cultivation of species. P. angulatais a more tolerant species and can be sown at different periods without compromising yield. High temperatures combined with scarcity of rainfall compromise the development of plants of both speciesof Physalis.
The use of saline water and wastewater in agriculture has been increasingly considered, and this is due to the increase in awareness about the conservation of natural resources and population growth, implying a greater demand for food. Drip irrigation already has many benefits and, with the splitting of the depths to be applied, results in pulse drip irrigation, which further favors the plant by providing more constant moisture in the soil. The objective of this study was to evaluate the effects of the application of wastewater and saline water by pulse drip irrigation on eggplant yield and water use efficiency. The experimental design was randomized blocks in 2 x 5 factorial scheme, corresponding to continuous and pulse drip irrigation and five types of water (municipal, saline (sodium chloride), saline (calcium chloride), wastewater, and a mix of saline (sodium chloride) and wastewater), with five repetitions. Water use efficiency was quantified according to the water applied and the production. Pulse drip irrigation promoted higher marketable fruit yield. The best performance of eggplant was verified when wastewater was applied via pulse drip irrigation. Wastewater via pulse drip irrigation can be used to grow eggplant for higher marketable yield and water use efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.