Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.
People vary in their ability to identify faces, and this variability is relatively stable across repeated testing. This suggests that recruiting high performers can improve identity verification accuracy in applied settings. Here, we report the first systematic study to evaluate real-world benefits of selecting high performers based on performance in standardized face identification tests. We simulated a recruitment process for a specialist team tasked with detecting fraudulent passport applications. University students (n = 114) completed a battery of screening tests followed by a real-world face identification task that is performed routinely when issuing identity documents. Consistent with previous work, individual differences in the real-world task were relatively stable across repeated tests taken 1 week apart (r = 0.6), and accuracy scores on screening tests and the real-world task were moderately correlated. Nevertheless, performance gains achieved by selecting groups based on screening tests were surprisingly small, leading to a 7% improvement in accuracy. Statistically aggregating decisions across individuals—using a ‘wisdom of crowds’ approach—led to more substantial gains than selection alone. Finally, controlling for individual accuracy of team members, the performance of a team in one test predicted their performance in a subsequent test, suggesting that a ‘good team’ is not only defined by the individual accuracy of team members. Overall, these results underline the need to use a combination of approaches to improve face identification performance in professional settings.Electronic supplementary materialThe online version of this article (10.1186/s41235-018-0114-7) contains supplementary material, which is available to authorized users.
We present a new test–the UNSW Face Test (www.unswfacetest.com)–that has been specifically designed to screen for super-recognizers in large online cohorts and is available free for scientific use. Super-recognizers are people that demonstrate sustained performance in the very top percentiles in tests of face identification ability. Because they represent a small proportion of the population, screening large online cohorts is an important step in their initial recruitment, before confirmatory testing via standardized measures and more detailed cognitive testing. We provide normative data on the UNSW Face Test from 3 cohorts tested via the internet (combined n = 23,902) and 2 cohorts tested in our lab (combined n = 182). The UNSW Face Test: (i) captures both identification memory and perceptual matching, as confirmed by correlations with existing tests of these abilities; (ii) captures face-specific perceptual and memorial abilities, as confirmed by non-significant correlations with non-face object processing tasks; (iii) enables researchers to apply stricter selection criteria than other available tests, which boosts the average accuracy of the individuals selected in subsequent testing. Together, these properties make the test uniquely suited to screening for super-recognizers in large online cohorts.
Past research suggests that an uncritical or ‘lazy’ style of evaluating evidence may play a role in the development and maintenance of implausible beliefs. We examine this possibility by using a quasi-experimental design to compare how low- and high-quality evidence is evaluated by those who do and do not endorse implausible claims. Seven studies conducted during 2019–2020 provided the data for this analysis (N = 746). Each of the seven primary studies presented participants with high- and/or low-quality evidence and measured implausible claim endorsement and evaluations of evidence persuasiveness (via credibility, value, and/or weight). A linear mixed-effect model was used to predict persuasiveness from the interaction between implausible claim endorsement and evidence quality. Our results showed that endorsers were significantly more persuaded by the evidence than non-endorsers, but both groups were significantly more persuaded by high-quality than low-quality evidence. The interaction between endorsement and evidence quality was not significant. These results suggest that the formation and maintenance of implausible beliefs by endorsers may result from less critical evidence evaluations rather than a failure to analyse. This is consistent with a limited rather than a lazy approach and suggests that interventions to develop analytical skill may be useful for minimising the effects of implausible claims.
We present a new test – the UNSW Face Test (www.unswfacetest.com) – that has been specifically designed to screen for super-recognizers in large online cohorts and is available free for scientific use. Super-recognizers are people that demonstrate sustained performance in the very top percentiles in tests of face identification ability. Because they represent a small proportion of the population, screening large online cohorts is an important tool for their initial recruitment, before completing confirmatory testing via standardized measures and more detailed cognitive testing. We provide normative data on the test from 3 cohorts tested via the internet (combined n = 23,902) and 2 cohorts tested in our lab (combined n = 182). The UNSW Face Test: (i) captures both identification memory and perceptual matching, as confirmed by correlations with existing tests of these abilities; (ii) captures face-specific perceptual and memorial abilities, as confirmed by non-significant correlations with non-face object processing tasks; (iii) enables researchers to apply stricter selection criteria than other available tests, which boosts the average accuracy of the individuals selected in subsequent testing. Together, these properties make the test uniquely suited to screening for super-recognizers in large online cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.