Background Stem size is an important element for successful time zero primary fixation of a press-fit humeral stem in shoulder arthroplasty. Little basic science research, however, has been conducted on the effects of implant thickness and canal fill on load transfer, contact, and stress shielding. The purpose of this finite element study was to determine the effects of varying stem thickness on bone contact, bone stresses, and bone resorption owing to stress shielding. Methods Three generic short-stem implant models were developed and varied based on cross-sectional thickness (thinner – 8 mm, medium – 12 mm, thicker – 16 mm). Using a finite element model, three outcome measures were determined (1) the amount of bone-to-implant contact, (2) changes in cortical and trabecular bone stresses from the intact state, and (3) changes in cortical and trabecular strain energy densities which can predict bone remodeling or stress shielding. Results Increasing the size of the humeral stem had no significant effects on bone-to-implant contact during loading ( P > .07). The thinner implant with the lowest canal fill ratio produced significantly lower changes in stress from the intact state in both cortical and trabecular bone ( P < .002). In addition, the thinner implant resulted in a substantially lower volume of bone predicted to stress shield and resorb when compared with the medium and thicker stems. Discussion The results demonstrate that thinner implants and lower canal fill may be beneficial over thicker sizes, provided equal initial fixation can be achieved. The thinner implant has a greater degree of load sharing and increases the mechanical load placed on surrounding bone, reducing the risk of stress shielding and bone resorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.