BackgroundThe cystic fibrosis (CF) basic defect, caused by dysfunction of the apical chloride channel CFTR in the gastrointestinal and respiratory tract epithelia, has not been employed so far to support the role of CF modifier genes.MethodsPatients were selected from 101 families with a total of 171 F508del-CFTR homozygous CF patients to identify CF modifying genes. A candidate gene based association study of 52 genes on 16 different chromosomes with a total of 182 genetic markers was performed. Differences in haplotype and/or diplotype distribution between case and reference CF subpopulations were analysed.ResultsVariants at immunologically relevant genes were associated with the manifestation of the CF basic defect (0.01
Background/MethodsThe molecular epidemiology of the chronic airway infections with Pseudomonas aeruginosa in individuals with cystic fibrosis (CF) was investigated by cross-sectional analysis of bacterial isolates from 51 CF centers and by longitudinal analysis of serial isolates which had been collected at the CF centers Hanover and Copenhagen since the onset of airway colonization over 30 years.ResultsGenotyping revealed that the P. aeruginosa population in CF is dominated by a few ubiquitous clones. The five most common clones retrieved from the CF host also belonged to the twenty most frequent clones in the environment and in other human disease habitats. Turnover of clones in CF airways was rare. At the Hanover clinic more than half of the patient cohort was still harbouring the initially acquired clone after twenty years of airway colonization. At the Copenhagen clinic, however, two rare clones replaced the initially acquired individual clones in all but one patient.ConclusionThe divergent epidemiology at the two sites is explained by their differential management of hygiene and antipseudomonal chemotherapy. Hygienic measures to prohibit patient-to-patient transmission and the modalities of antipseudomonal chemotherapy modify the epidemiology of the chronic P. aeruginosa infections in CF.
The major cystic fibrosis mutation F508del has been classified by experiments in animal and cell culture models as a temperature-sensitive mutant defective in protein folding, processing and trafficking, but literature data on F508del CFTR maturation and function in human tissue are inconsistent. In the present study the molecular pathology of F508del CFTR was characterized in freshly excised rectal mucosa by bioelectric measurement of the basic defect and CFTR protein analysis by metabolic labelling or immunoblot. The majority of investigated F508del homozygous subjects expressed low amounts of complex-glycosylated mature F508del CFTR and low residual F508del CFTR-mediated chloride secretory activity in the rectal mucosa. The finding that some F508del CFTR escapes the ER quality control in vivo substantiates the hope that the defective processing and trafficking of F508del CFTR can be corrected by pharmacological agents.
A dominant powdery mildew resistance gene introduced from Triticum timopheevii in line 146-155-T of common wheat, Triticum aestivum, was located on chromosome 6B by monosomic analysis. Restriction fragment length polymorphism (RFLP) and microsatellite analyses detected the presence of a T. timopheevii segment, translocated to chromosome 6B, with breakpoints between the loci Xpsr8/Xpsr964 on 6BS and Xpsr154/Xpsr546 on 6BL. The novel powdery mildew resistance gene, which has been designated Pm27, was shown to cosegregate with the microsatellite locus Xpsp3131, which is located on the introgressed T. timopheevii segment. The molecular data confirm the location of Pm27 on the translocated 6B chromosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.