Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large class of natural products produced across all domains of life. The lasso peptides, a subclass of RiPPs with a lasso-like structure, are structurally and functionally unique compared to other known peptide antibiotics in that the linear peptide is literally “tied in a knot” during its post-translational maturation. This underexplored class of peptides brings chemical diversity and unique modes of action to the antibiotic space. To date, eight different lasso peptides have been shown to target three known molecular machines: RNA polymerase, the lipid II precursor in peptidoglycan biosynthesis, and the ClpC1 subunit of the Clp protease involved in protein homeostasis. Here, we discuss the current knowledge on lasso peptide biosynthesis as well as their antibiotic activity, molecular targets, and mechanisms of action.
Ribosomally synthesized post-translationally modified peptides (RiPPs) are a diverse class of biologically active molecules produced by many environmental bacteria. While thousands of these compounds have been identified, mostly through genome mining, a relatively small number has been investigated at the molecular level. One less understood class of RiPPs is the lasso peptides. These are 20−25 amino acid residue compounds bearing an N-terminal macrocyclic ring and a Cterminal tail that is threaded through the ring. We have carried out a detailed investigation on the mechanism of action of the siamycin-I lasso peptide. We demonstrate that siamycin-I interacts with lipid II, the central building block of the major cell wall component peptidoglycan, which is readily accessible on the outside of the cell. This interaction compromises cell wall biosynthesis in a manner that activates the liaI stress response. Additionally, resistance to siamycin-I can be brought about by mutations in the essential WalKR two-component system that causes thickening of the cell wall. Siamycin-I is the first lasso peptide that has been shown to inhibit cell wall biosynthesis.
New approaches to antimicrobial discovery are needed to address the growing threat of antibiotic resistance. The Streptomyces genus, a proven source of antibiotics, is recognized as having a large reservoir of untapped secondary metabolic genes, many of which are likely to produce uncharacterized compounds. However, most of these compounds are currently inaccessible, as they are not expressed under standard laboratory conditions. Here, we present a novel methodology for activating these "cryptic" metabolites by heterologously expressing a constitutively active pleiotropic regulator. By screening wild Streptomyces isolates, we identified the antibiotic siamycin-I, a lasso peptide that we show is active against multidrug pathogens. We further revealed that siamycin-I interferes with cell wall integrity via lipid II. This new technology has the potential to be broadly applied for use in the discovery of additional "cryptic" metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.