The purpose of this study was to test the extent to which differences in spot intensity can be reliably recognized between two groups of two-dimensional electrophoresis gels (pH 4-7, visualized with ruthenium fluorescent stain) each loaded with different amounts of protein from rat brain (power analysis). Initial experiments yielded only unsatisfactory results: 546 spots were matched from two groups of 6 gels each loaded with 200 microg and 250 microg protein, respectively. Only 72 spots were higher (p<0.05), while 58 spots were significantly lower in the 250-microg group. The construction of new apparatuses that allowed the simultaneous processing of 24 gels throughout all steps between rehydration and staining procedure considerably lowered the between-gel variation. This resulted in the detection of significant differences in spot intensities in 77-90% of all matched spots on gel groups with a 25% difference in protein load. This applied both when protein from 24 biological replicates was loaded onto two groups of 12 gels and when two pooled tissue samples were each loaded onto 6 gels. At a difference of 50% in protein load, more than 90% of all spots differed significantly between two experimental groups.
We investigated the effects of tissue samples taken from rat brain on the reliability of three protein quantification kits: the Bradford assay, the 2-D Quant Kit, and the EZQ Protein Quantitation Kit. All three assays measured significantly smaller amounts of protein after extraction than the reference values before extraction. Only small effects were seen in homogenates, but very pronounced differences in membrane-enriched and highly lipophilic subcellular fractions. Researchers should evaluate which method of protein quantification is best qualified for their specific experimental design.
When the p-value is set at <0.05 in statistical group comparisons, a 5% rate of "false significant" results is expected. In order to test the reliability of our 2-DE method, we loaded each of 24 gels with equal-sized samples (200 mug protein from pooled rat brain, pH 4-7, stained with ruthenium fluorescent stain for visualization) and statistically compared the first 12 gels with the last 12. In numerous experiments the rate of significant differences found far exceeded 5%. Several factors were identified as causing the following rates of false significant differences in spot intensities: (i) running samples in two different 2-DE runs (42%), (ii) running second dimension gels produced in two different gel casters (16%), (iii) normalizing the entire gel instead of separately normalizing several different gel zones (11%), (iv) using IPG strips from different packages (19%), (v) dividing the whole sample into subgroups during software analysis (9%). After controlling for all these factors, the rates of "false positive" results in our experiments were regularly reduced to approximately 5%. This is an indispensable prerequisite for avoiding too high a rate of false positive results in experiments in which different subgroups are compared statistically.
Little is known about what happens to transmembrane proteins (TMP) in 2-DE. In order to obtain more insight into the whereabouts of these proteins we prepared membrane-enriched synaptosomes from rat frontal cortex and washed them with 7 M urea or Na(2)CO(3). From each preparation, 200 microg protein was loaded on 2-DE gels covering the 4-7 and 6-11 pH ranges, respectively. MALDI-MS/MS analysis detected only 3 TMP among 421 identified spots. However, when the samples had been washed with Na(2)CO(3), only few well-focused spots remained detectable on the gel covering the pH 6-11 range. Instead, a heavily ruthenium-stained smear became visible at the upper edge of the gel at the location where the samples had been applied by cup loading. LC-MS/MS analysis revealed that this smear contained 38 unfocused TMP with up to 12 transmembrane helices. After transfer to the second dimension, no major areas of protein staining were left on the IPG strips. This indicates that after extraction and denaturation the TMP may form high-molecular aggregates, due to their "hydrophobic interactions". These aggregates enter the IPG strips, but do not focus regularly. They are then transferred onto the 2-DE-gels, where they remain caught at the upper edge.
We report that reliable quantitative proteome analyses can be performed with tissue samples stored at -80 degrees C for up to 10 years. However, storing protein extracts at 4 degrees C for 24 h and freezing protein extracts at -80 degrees C and thawing them significantly altered 41.6 and 17.5% of all spot intensities on 2-DE gels, respectively. Fortunately, these storing effects did not impair the reliability of quantifying 2-DE experiments. Nonetheless, the results show that freezing and storage conditions should be carefully controlled in proteomic experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.