The kinetics of DNA hybridization are fundamental to biological processes and DNA-based technologies. However, the precise physical mechanisms that determine why different DNA sequences hybridize at different rates are not well understood. Secondary structure is one predictable factor that influences hybridization rates but is not sufficient on its own to fully explain the observed sequence-dependent variance. In this context, we measured hybridization rates of 43 different DNA sequences that are not predicted to form secondary structure and present a parsimonious physically justified model to quantify our observations. Accounting only for the combinatorics of complementary nucleating interactions and their sequence-dependent stability, the model achieves good correlation with experiment with only two free parameters. Our results indicate that greater repetition of Watson–Crick pairs increases the number of initial states able to proceed to full hybridization, with the stability of those pairings dictating the likelihood of such progression, thus providing new insight into the physical factors underpinning DNA hybridization rates.
Postoperative delirium is a common medical complication following cardiac surgery. This paper will outline the treatment options for delirium with a focus on prophylactic use of risperidone before cardiac surgery.
The kinetics of DNA hybridisation are fundamental to biological processes and DNA-based technologies. However, the precise physical mechanisms that determine why different DNA sequences hybridise at different rates are not well understood. Secondary structure is one predictable factor that influences hybridisation rates but is not sufficient on its own to fully explain the observed sequence-dependent variance. Consequently, to achieve a good correlation with experimental data, current prediction algorithms require many parameters that provide little mechanistic insight into DNA hybridisation. In this context, we measured hybridisation rates of 43 different DNA sequences that are not predicted to form secondary structure and present a parsimonious physically justified model to quantify their hybridisation rates. Accounting only for the combinatorics of complementary nucleating interactions and their sequence-dependent stability, the model achieves good correlation with experiment with only two free parameters, thus providing new insight into the physical factors underpinning DNA hybridisation rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.