Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus ( FOXP2 , lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10 −9 ) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2 , lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10 −9 ). Cannabis use disorder and cannabis use were genetically correlated ( r g 0·50, p=1·50 × 10 −21 ), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Serv...
Cigarette smoking is the leading cause of preventable morbidity and mortality. Genetic variation contributes to initiation, regular smoking, nicotine dependence, and cessation. We present a Fagerström Test for Nicotine Dependence (FTND)-based genome-wide association study in 58,000 European or African ancestry smokers. We observe five genome-wide significant loci, including previously unreported loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416), and extend loci reported for other smoking traits to nicotine dependence. Using the heaviness of smoking index from UK Biobank (N = 33,791), rs2714700 is consistently associated; rs1862416 is not associated, likely reflecting nicotine dependence features not captured by the heaviness of smoking index. Both variants influence nearby gene expression (rs2714700/MAGI2-AS3 in hippocampus; rs1862416/TENM2 in lung), and expression of genes spanning nicotine dependence-associated variants is enriched in cerebellum. Nicotine dependence (SNP-based heritability = 8.6%) is genetically correlated with 18 other smoking traits (rg = 0.40–1.09) and co-morbidities. Our results highlight nicotine dependence-specific loci, emphasizing the FTND as a composite phenotype that expands genetic knowledge of smoking.
Genetic liability to substance use disorders can be parsed into loci that confer general or substance-specific addiction risk. We report a multivariate genome-wide association meta-analysis that disaggregates general and substance-specific loci from published summary statistics of problematic alcohol use, problematic tobacco use, cannabis use disorder and opioid use disorder in a sample of 1,025,550 individuals of European descent and 92,630 individuals of African descent. Nineteen independent singlenucleotide polymorphisms were genome-wide significant (P < 5 × 10 -8 ) for the general addiction risk factor (addiction-rf), which showed high polygenicity. Across ancestries, PDE4B was significant (among other genes), suggesting dopamine regulation as a cross-substance vulnerability. An addiction-rf polygenic risk score was associated with substance use disorders, psychopathologies, somatic conditions and environments associated with the onset of addictions. Substance-specific loci (9 for alcohol, 32 for tobacco, 5 for cannabis and 1 for opioids) included metabolic and receptor genes. These findings provide insight into genetic risk loci for substance use disorders that could be leveraged as treatment targets.The lives lost, impacts on individuals and families, and socioeconomic costs attributable to substance use reflect a growing public health crisis 1 . For example, in the United States, 13.5% of deaths among young adults 2 are attributable to alcohol, smoking is the leading risk factor for mortality in males 3 , and the odds of dying by opioid overdose are greater than those of dying in a motor vehicle crash 4 . Despite the large impact of substance use and substance use disorders 5 , there is limited knowledge of the molecular genetic underpinnings of addiction broadly.
Aims To estimate the effect of recreational legalization on cannabis use frequency and sources of variance across legal environments. Design Longitudinal discordant twin and gene–environment interaction models in twins recruited from birth records and assessed prospectively. Setting The United States, including states with different recreational cannabis policies before and after 2014, when recreational cannabis was first legalized. Participants Two longitudinal, prospectively assessed samples of American twins aged 24–47 (n = 1425 in legal states, n = 1996 in illegal states), including 111 monozygotic pairs discordant for residence. Measurements Current cannabis use frequency (measured continuously and ordinally) was the primary outcome, and the predictor was recreational status of cannabis (legal/illegal) in the participant’s state of residence at the time of assessment. Covariates include age, sex and cannabis use frequency prior to 2014. Findings Accounting for pre‐2014 use, residents of legal states used cannabis more frequently than residents of illegal states (b = 0.21, P = 8.08 × 10−5). Comparing 111 pairs of monozygotic twins discordant for residence confirmed the effect (b = 0.18, P = 0.014). There was inconclusive evidence for genetic influences on cannabis use frequency that were specific to the legal environment [χ2 = 2.9 × 10−9, degrees of freedom (d.f.) = 1, P > 0.999]. Existing genetic influences were moderated by the legal environment, as the genetic correlation between marijuana use before and after legalization was lower in states that legalized (rgenetic = 0.24) compared with states that did not (rgenetic = 0.78, Pdifference = 0.016). Conclusions In the United States, there appears to be a ~ 20% average increase in cannabis use frequency attributable to recreational legalization, consistent across increasingly rigorous designs. In addition, the heritability of cannabis use frequency appears to be moderated by legalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.