Abstract:In this paper, we scrutinize the effectiveness of classification techniques in recognizing dance types based on motion-captured human skeleton data. In particular, the goal is to identify poses which are characteristic for each dance performed, based on information on body joints, acquired by a Kinect sensor. The datasets used include sequences from six folk dances and their variations. Multiple pose identification schemes are applied using temporal constraints, spatial information, and feature space distributions for the creation of an adequate training dataset. The obtained results are evaluated and discussed.
Given the broad range of applications from video surveillance to human–computer interaction, human action learning and recognition analysis based on 3D skeleton data are currently a popular area of research. In this paper, we propose a method for action recognition using depth sensors and representing the skeleton time series sequences as higher-order sparse structure tensors to exploit the dependencies among skeleton joints and to overcome the limitations of methods that use joint coordinates as input signals. To this end, we estimate their decompositions based on randomized subspace iteration that enables the computation of singular values and vectors of large sparse matrices with high accuracy. Specifically, we attempt to extract different feature representations containing spatio-temporal complementary information and extracting the mode-n singular values with regards to the correlations of skeleton joints. Then, the extracted features are combined using discriminant correlation analysis, and a neural network is used to recognize the action patterns. The experimental results presented use three widely used action datasets and confirm the great potential of the proposed action learning and recognition method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.