We demonstrate a fast and versatile approach to analyze the modal content of a high power fiber amplifier using a low-loss photonic lantern. By monitoring the first three modes of the photonic lantern on a photodetector we can directly determine the modal content of a laser beam, enabling real time diagnostics of the output and its corresponding beam quality factor, M2. We first investigate the beam quality and modal content of the output of a passive LMA double clad fiber commonly used as a delivery fiber in high power fiber laser amplifiers. The output of the fiber is analyzed by both a 6-mode mode-selective photonic lantern and a conventional M2 setup utilizing a translation stage and beam profiler. The modal content and beam quality measurements produced in real-time by the photonic lantern are compared to the M2 measurements resulting in an RMS error less than 0.098 across M2 values between 1.020 to 2.260. We then conduct a follow on experiment using the same photonic lantern to monitor modal instability in a large mode area fiber laser amplifier. In this case, we compare our photonic lantern mode analysis approach versus the commonly used RIN/pinhole method evaluating modal instabilities. Not only does the photonic lantern estimate the modal content and beam quality in real-time but the modal content trends with the RIN metric as the fiber laser amplifier progresses from stable regime below 300W through the chaotic transverse modal instability regime above 400W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.