We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt2+ and Pt4+ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.
Where oxide and metals meet: The activation of an efficient associative mechanistic pathway for the water-gas shift reaction by an oxide-metal interface leads to an increase in the catalytic activity of nanoparticles of ceria deposited on Cu(111) or Au(111) by more than an order of magnitude (see graph). In situ experiments demonstrated that a carboxy species formed at the metal-oxide interface is the critical intermediate in the reaction
These authors contributed equally to the work. MFL, SH and MHR contributed to the design, execution, and analysis of the experiment; EJC was critical in the design, building and testing of the end station that allows atmospheric pressure XPS data collection on a solution under potentiostatic control. ‡ Corresponding authors:
The role of the interface between a metal and oxide (CeO x −Cu and ZnO−Cu) is critical to the production of methanol through the hydrogenation of CO 2 (CO 2 + 3H 2 → CH 3 OH + H 2 O). The deposition of nanoparticles of CeO x or ZnO on Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts for methanol synthesis. The catalytic activity of these systems increases in the sequence: Cu(111) < ZnO/Cu(111) < CeO x /Cu(111). The apparent activation energy for the CO 2 → CH 3 OH conversion decreases from 25 kcal/mol on Cu(111) to 16 kcal/mol on ZnO/Cu(111) and 13 kcal/mol on CeO x /Cu(111). The surface chemistry of the highly active CeO x −Cu(111) interface was investigated using ambient pressure X-ray photoemission spectroscopy (AP-XPS) and infrared reflection absorption spectroscopy (AP-IRRAS). Both techniques point to the formation of formates (HCOO −) and carboxylates (CO 2 δ−) during the reaction. Our results show an active state of the catalyst rich in Ce 3+ sites which stabilize a CO 2 δ− species that is an essential intermediate for the production of methanol. The inverse oxide/metal configuration favors strong metal−oxide interactions and makes possible reaction channels not seen in conventional metal/oxide catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.