BackgroundEven though the process of potato tuber starch biosynthesis is well understood, mechanisms regulating biosynthesis are still unclear. Transcriptome analysis provides valuable information as to how genes are regulated. Therefore, this work aimed at investigating transcriptional regulation of starch biosynthetic genes in leaves and tubers of potato plants under various conditions. More specifically we looked at gene expression diurnally in leaves and tubers, during tuber induction and in tubers growing at different velocities. To determine velocity of potato tuber growth a new method based on X-ray Computed Tomography (X-ray CT) was established.ResultsComparative transcriptome analysis between leaves and tubers revealed striking similarities with the same genes being differentially expressed in both tissues. In tubers, oscillation of granule bound starch synthase (GBSS) expression) was observed which could be linked to sucrose supply from source leaves. X-ray CT was used to determine time-dependent changes in tuber volume and the growth velocity was calculated. Although there is not a linear correlation between growth velocity and expression of starch biosynthetic genes, there are significant differences between growing and non-growing tubers. Co-expression analysis was used to identify transcription factors positively correlating with starch biosynthetic genes possibly regulating starch biosynthesis.ConclusionMost starch biosynthetic enzymes are encoded by gene families. Co-expression analysis revealed that the same members of these gene families are co-regulated in leaves and tubers. This suggests that regulation of transitory and storage starch biosynthesis in leaves and tubers, respectively, is surprisingly similar. X-ray CT can be used to monitor growth and development of belowground organs and allows to link tuber growth to changes in gene expression. Comparative transcriptome analysis provides a useful tool to identify transcription factors possibly involved in the regulation of starch biosynthesis.
Cytosolic (U-IN-2) or apoplasmic (U-IN-1) targeting of yeast invertase in potato tubers leads to a reduction in sucrose and an increase in glucose content, but specific phenotypical changes are dependent on the subcellular targeting of the enzyme. Cytosolic expression leads to a more severe phenotype with the most striking aspects being reduced starch content and increased respiration. Despite extensive research, the regulatory mechanisms leading to these changes remain obscure. Recent technological advancements regarding potato transcriptional and genomic research presented us with the opportunity to revisit these lines and perform detailed gene expression analysis, in combination with extensive metabolic profiling, to identify regulatory networks underlying the observed changes. Our results indicate that in both genotypes reduced UDP-glucose production is associated with a reduced expression of cell wall biosynthetic genes. In addition, U-IN-1 tubers are characterized by elevated expression of senescence-associated genes, coupled to reduced expression of genes related to photosynthesis and the cytoskeleton. We provide evidence that increased respiration, observed specifically in U-IN-2 tubers, might be due to sugar signaling via released trehalose-6-phosphate inhibition of the SnRK1 complex. In both genotypes, expression of the plastidic glucose-6-phosphate transporter (GPT) is significantly down-regulated. This leads to a shift in the cytosolic to plastidic glucose-6-phosphate ratio and hence might limit starch synthesis but also the oxidative pentose phosphate pathway. This might explain the observed changes in several additional plastid localized pathways, most notably reduced expression of fatty acid biosynthetic genes and an accumulation of shikimate. Interestingly, a strict negative correlation between invertase and GPT expression could be observed in a wide range of potato tubers. This reciprocal regulation may be part of a more general switch controlling energy versus storage metabolism, suggesting that the fate of assimilate utilization is coordinated at the level of sucrose degradation.
Isoamylases hydrolyse (1–6)-alpha-D-glucosidic linkages in starch and are involved in both starch granule formation and starch degradation. In plants, three isoamylase isoforms with distinct functions in starch synthesis (ISA1 and ISA2) and degradation (ISA3) have been described. Here, we created transgenic potato plants with simultaneously decreased expression of all three isoamylases using a chimeric RNAi construct targeting all three isoforms. Constitutive expression of the hairpin RNA using the 35S CaMV promoter resulted in efficient silencing of all three isoforms in leaves, growing tubers, and sprouting tubers. Neither plant growth nor tuber yield was effected in isoamylase-deficient potato lines. Interestingly, starch metabolism was found to be impaired in a tissue-specific manner. While leaf starch content was unaffected, tuber starch was significantly reduced. The reduction in tuber starch content in the transgenic plants was accompanied by a decrease in starch granules size, an increased sucrose content and decreased hexose levels. Despite the effects on granule size, only little changes in chain length composition of soluble and insoluble glucose polymers were detected. The transgenic tubers displayed an early sprouting phenotype that was accompanied by an increased level of sucrose in parenchyma cells below the outgrowing bud. Since high sucrose levels promote sprouting, we propose that the increased number of small starch granules may cause an accelerated turnover of glucan chains and hence a more rapid synthesis of sucrose. This observation links alterations in starch structure/degradation with developmental processes like meristem activation and sprout outgrowth in potato tubers.
Starch only occurs in small amounts in sugarcane, but is, nevertheless an unwanted product because it reduces the amount of sucrose that can be crystallized from molasses. In an attempt to reduce the starch content of sugarcane, the activities of ADP-glucose pyrophosphorylase (AGPase) and beta-amylase were manipulated using transgenic approaches. Transformation vectors to reduce AGPase activity and to increase plastidial beta-amylase activity were constructed and used for the transformation of sugarcane calli. The results of the manipulations were analyzed in suspension cultures. AGPase activity was reduced down to between 14 and 54% of the wild-type control. This led to a reduction in starch concentration down to 38% of the levels of the wild-type control. beta-Amylase activity was increased in the transgenic lines by 1.5-2 times that of the wild-type control. This increase in activity led to a reduction in starch amounts by 90% compared to wild-type control cells. In both experiments, the changes in starch concentrations could be correlated with the change in enzyme activity. There were no significant effects on sucrose concentrations in either experiment, indicating that these approaches might be useful to engineer regenerated sugarcane for optimized sucrose production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.