Abstract-Agile projects are showing greater promise in rapid fielding as compared to waterfall projects. However, there is a lack of clarity regarding what really constitutes and contributes to success. We interviewed project teams with incremental development lifecycles, from five government and commercial organizations, to gain a better understanding of success and failure factors for rapid fielding on their projects. A key area we explored involves how Agile projects deal with the pressure to rapidly deliver high-value capability, while maintaining project speed (delivering functionality to the users quickly) and product stability (providing reliable and flexible product architecture). For example, due to schedule pressure we often see a pattern of high initial velocity for weeks or months, followed by a slowing of velocity due to stability issues. Business stakeholders find this to be disruptive as the rate of capability delivery slows while the team addresses stability problems. We found that experienced practitioners, when faced with these challenges, do not apply Agile practices alone. Instead they combine practices-Agile, architecture, or other-in creative ways to respond quickly to unanticipated stability problems. In this paper, we summarize the practices practitioners we interviewed from Agile projects found most valuable and provide an overarching scenario that provides insight into how and why these practices emerge.
There is growing interest in continuous delivery practices to enable rapid and reliable deployment. While practices are important, we suggest architectural design decisions are equally important for projects to achieve goals such continuous integration (CI) build, automated testing and reduced deployment-cycle time. Architectural design decisions that conflict with deployability goals can impede the team's ability to achieve the desired state of deployment and may result in substantial technical debt. To explore this assertion, we interviewed three project teams striving to practicing continuous delivery. In this paper, we summarize examples of the deployability goals for each project as well as the architectural decisions that they have made to enable deployability. We present the deployability goals, design decisions, and deployability tactics collected and summarize the design tactics derived from the interviews in the form of an initial draft version hierarchical deployability tactic tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.