Background: Tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on reverse transcriptase polymerase chain reaction (RT-PCR) are being used to "rule out" infection among high-risk persons, such as exposed inpatients and health care workers. It is critical to understand how the predictive value of the test varies with time from exposure and symptom onset to avoid being falsely reassured by negative test results. Objective: To estimate the false-negative rate by day since infection. Design: Literature review and pooled analysis. Setting: 7 previously published studies providing data on RT-PCR performance by time since symptom onset or SARS-CoV-2 exposure using samples from the upper respiratory tract (n = 1330). Patients: A mix of inpatients and outpatients with SARS-CoV-2 infection. Measurements: A Bayesian hierarchical model was fitted to estimate the false-negative rate by day since exposure and symptom onset. Results: Over the 4 days of infection before the typical time of symptom onset (day 5), the probability of a false-negative result in an infected person decreases from 100% (95% CI, 100% to 100%) on day 1 to 67% (CI, 27% to 94%) on day 4. On the day of symptom onset, the median false-negative rate was 38% (CI, 18% to 65%). This decreased to 20% (CI, 12% to 30%) on day 8 (3 days after symptom onset) then began to increase again, from 21% (CI, 13% to 31%) on day 9 to 66% (CI, 54% to 77%) on day 21. Limitation: Imprecise estimates due to heterogeneity in the design of studies on which results were based. Conclusion: Care must be taken in interpreting RT-PCR tests for SARS-CoV-2 infection-particularly early in the course of infection-when using these results as a basis for removing precautions intended to prevent onward transmission. If clinical suspicion is high, infection should not be ruled out on the basis of RT-PCR alone, and the clinical and epidemiologic situation should be carefully considered.
Background Assessing the burden of COVID-19 on the basis of medically attended case numbers is suboptimal given its reliance on testing strategy, changing case definitions, and disease presentation. Population-based serosurveys measuring anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) antibodies provide one method for estimating infection rates and monitoring the progression of the epidemic. Here, we estimate weekly seroprevalence of anti-SARS-CoV-2 antibodies in the population of Geneva, Switzerland, during the epidemic.Methods The SEROCoV-POP study is a population-based study of former participants of the Bus Santé study and their household members. We planned a series of 12 consecutive weekly serosurveys among randomly selected participants from a previous population-representative survey, and their household members aged 5 years and older. We tested each participant for anti-SARS-CoV-2-IgG antibodies using a commercially available ELISA. We estimated seroprevalence using a Bayesian logistic regression model taking into account test performance and adjusting for the age and sex of Geneva's population. Here we present results from the first 5 weeks of the study. FindingsBetween April 6 and May 9, 2020, we enrolled 2766 participants from 1339 households, with a demographic distribution similar to that of the canton of Geneva. In the first week, we estimated a seroprevalence of 4•8% (95% CI 2•4-8•0, n=341). The estimate increased to 8•5% (5•9-11•4, n=469) in the second week, to 10•9% (7•9-14•4, n=577) in the third week, 6•6% (4•3-9•4, n=604) in the fourth week, and 10•8% (8•2-13•9, n=775) in the fifth week. Individuals aged 5-9 years (relative risk [RR] 0•32 [95% CI 0•11-0•63]) and those older than 65 years (RR 0•50 [0•28-0•78]) had a significantly lower risk of being seropositive than those aged 20-49 years. After accounting for the time to seroconversion, we estimated that for every reported confirmed case, there were 11•6 infections in the community.Interpretation These results suggest that most of the population of Geneva remained uninfected during this wave of the pandemic, despite the high prevalence of COVID-19 in the region (5000 reported clinical cases over <2•5 months in the population of half a million people). Assuming that the presence of IgG antibodies is associated with immunity, these results highlight that the epidemic is far from coming to an end by means of fewer susceptible people in the population. Further, a significantly lower seroprevalence was observed for children aged 5-9 years and adults older than 65 years, compared with those aged 10-64 years. These results will inform countries considering the easing of restrictions aimed at curbing transmission.
We measured plasma and/or serum antibody responses to the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2 in 343 North American patients infected with SARS-CoV-2 (of which 93% required hospitalization) up to 122 days after symptom onset and compared them to responses in 1548 individuals whose blood samples were obtained prior to the pandemic. After setting seropositivity thresholds for perfect specificity (100%), we estimated sensitivities of 95% for IgG, 90% for IgA, and 81% for IgM for detecting infected individuals between 15 and 28 days after symptom onset. While the median time to seroconversion was nearly 12 days across all three isotypes tested, IgA and IgM antibodies against RBD were short-lived with median times to seroreversion of 71 and 49 days after symptom onset. In contrast, anti-RBD IgG responses decayed slowly through 90 days with only 3 seropositive individuals seroreverting within this time period. IgG antibodies to SARS-CoV-2 RBD were strongly correlated with anti-S neutralizing antibody titers, which demonstrated little to no decrease over 75 days since symptom onset. We observed no cross-reactivity of the SARS-CoV-2 RBD-targeted antibodies with other widely circulating coronaviruses (HKU1, 229 E, OC43, NL63). These data suggest that RBD-targeted antibodies are excellent markers of previous and recent infection, that differential isotype measurements can help distinguish between recent and older infections, and that IgG responses persist over the first few months after infection and are highly correlated with neutralizing antibodies.
SignificanceForecasts routinely provide critical information for dangerous weather events but not yet for epidemics. Researchers develop computational models that can be used for infectious disease forecasting, but forecasts have not been broadly compared or tested. We collaboratively compared forecasts from 16 teams for 8 y of dengue epidemics in Peru and Puerto Rico. The comparison highlighted components that forecasts did well (e.g., situational awareness late in the season) and those that need more work (e.g., early season forecasts). It also identified key facets to improve forecasts, including using multiple model ensemble approaches to improve overall forecast skill. Future infectious disease forecasting work can build on these findings and this framework to improve the skill and utility of forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.