In the past, we have used the kinins of the cockroach Leucophaea (the leucokinins) to evaluate the mechanism of diuretic action of kinin peptides in Malpighian tubules of the yellow fever mosquito Aedes aegypti. Now using the kinins of Aedes (the aedeskinins), we have found that in isolated Aedes Malpighian tubules all three aedeskinins (1 microM) significantly 1) increased the rate of fluid secretion (V(S)), 2) hyperpolarized the basolateral membrane voltage (V(bl)), and 3) decreased the input resistance (R(in)) of principal cells, consistent with the known increase in the Cl(-) conductance of the paracellular pathway in Aedes Malpighian tubules. Aedeskinin-III, studied in further detail, significantly increased V(S) with an EC(50) of 1.5 x 10(-8) M. In parallel, the Na(+) concentration in secreted fluid significantly decreased, and the K(+) concentration significantly increased. The concentration of Cl(-) remained unchanged. While the three aedeskinins triggered effects on V(bl), R(in), and V(S), synthetic kinin analogs, which contain modifications of the COOH-terminal amide pentapeptide core sequence critical for biological activity, displayed variable effects. For example, kinin analog 1578 significantly stimulated V(S) but had no effect on V(bl) and R(in), whereas kinin analog 1708 had no effect on V(S) but significantly affected V(bl) and R(in). These observations suggest separate signaling pathways activated by kinins. One triggers the electrophysiological response, and the other triggers fluid secretion. It remains to be determined whether the two signaling pathways emanate from a single kinin receptor via agonist-directed signaling or from a differentially glycosylated receptor. Occasionally, Malpighian tubules did not exhibit a detectable response to natural and synthetic kinins. Hypothetically, the expression of the kinin receptor may depend on developmental, nutritional, and/or reproductive signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.