Despite tremendous progress in genome sequencing, the basic goal of producing phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe a new approach to perform de novo genome assembly and experimental phasing by integrating the data from Illumina shortread sequencing, 10X Genomics Linked-Read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome.The completion of the human genome reference assembly in 2003 marked a major milestone in genome research. The reference human genome sequence (and the genome sequences of Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms Correspondence should be addressed to P.Y.K. (Pui.Kwok@ucsf.edu). Accession codes. Sequencing and assembly data are available under BioProject PRJNA315896 with Sequence Read Archive accession numbers: SRX1675529, SRX1675530 and SRX1675531.Author Contributions P.Y.K., J.D.W., and Y.M. conceived the project and provided resources and oversight for sequencing and algorithmic analysis. K.G. prepared long libraries for 10XG GemCode sequencing. C.C. and C.L. performed long DNA preparation and BNG genome mapping experiments. E.T.L., A.R.H., Ž. DŽ., J. Lee, and H.C. built initial genome maps and performed BNG alignment and SV calling. Y.M. and J. Lam performed scaffold analysis. E.T.L., A.R.H., and J. Lee performed hybrid genome assembly. P.M., K.G., and M.S.L. performed scaffold phasing. Y.M., M.L.S., E.T.L., J. Lam, J. Lee, and S.A.S. performed validation and quality measure analyses of the assembled data. Y.M., E.T.L., M.L.S., and P.Y.K. primarily wrote the manuscript and revisions, though many coauthors provided edits and methods sections.Competing Financial Interests Statement E.T.L., A.R.H., J. Lee, Ž. DŽ., H.C. are employees of BioNano Genomics. P.M., K.G., M.S.L. are employees of 10X Genomics, and P.Y.K. is on the scientific advisory board of BioNano Genomics. HHS Public Access Author ManuscriptAuthor Manuscript Author ManuscriptAuthor Manuscript numerous other organisms) and the sequencing technologies developed for the Human Genome Project revolutionized biological research and hastened the discovery of causal mutations for many diseases 1,2 . Despite tremendous progress, the basic goal of producing phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. Consequently, researchers who engage in human "whole-genome sequencing" have produced tens of thousands of genomes that are collections of short-read sequences aligned to the composite reference human genome sequence produced from several donors of various ethnic backgrounds. Similarly, de novo assemblies of other species generally consist of a set ...
Research on the genetics of natural populations was revolutionized in the 1990s by methods for genotyping noninvasively collected samples. However, these methods have remained largely unchanged for the past 20 years and lag far behind the genomics era. To close this gap, here we report an optimized laboratory protocol for genome-wide capture of endogenous DNA from noninvasively collected samples, coupled with a novel computational approach to reconstruct pedigree links from the resulting low-coverage data. We validated both methods using fecal samples from 62 wild baboons, including 48 from an independently constructed extended pedigree. We enriched fecal-derived DNA samples up to 40-fold for endogenous baboon DNA and reconstructed near-perfect pedigree relationships even with extremely low-coverage sequencing. We anticipate that these methods will be broadly applicable to the many research systems for which only noninvasive samples are available. The lab protocol and software (“WHODAD”) are freely available at www.tung-lab.org/protocols-and-software.html and www.xzlab.org/software.html, respectively.
Naturally occurring admixture has now been documented in every major primate lineage, suggesting its key role in primate evolutionary history. Active primate hybrid zones can provide valuable insight into this process. Here, we investigate the history of admixture in one of the best-studied natural primate hybrid zones, between yellow baboons (Papio cynocephalus) and anubis baboons (Papio anubis) in the Amboseli ecosystem of Kenya. We generated a new genome assembly for yellow baboon and low coverage genome-wide resequencing data from yellow baboons, anubis baboons, and known hybrids (n=44). Using a novel composite likelihood method for estimating local ancestry from low coverage data, we found high levels of genetic diversity and genetic differentiation between the parent taxa, and excellent agreement between genome-scale ancestry estimates and a priori pedigree, life history, and morphology-based estimates (r2=0.899). However, even putatively unadmixed Amboseli yellow individuals carried a substantial proportion of anubis ancestry, presumably due to historical admixture. Further, the distribution of shared versus fixed differences between a putatively unadmixed Amboseli yellow baboon and an unadmixed anubis baboon, both sequenced at high coverage, are inconsistent with simple isolation-migration or equilibrium migration models. Our findings suggest a complex process of intermittent contact that has occurred multiple times in baboon evolutionary history, despite no obvious fitness costs to hybrids or major geographic or behavioral barriers. In combination with the extensive phenotypic data available for baboon hybrids, our results provide valuable context for understanding the history of admixture in primates, including in our own lineage.
The order Chiroptera, commonly known as bats, is the only group of mammals to have evolved the capability of flight. They are estimated to have diverged from their arboreal ancestors ~51 million years ago 1 . Their adaptions for flight include substantial specialization of the forelimb, characterized by the notable extension of digits II-V, a decrease in wing bone mineralization along the proximal-distal axis, and the retention and expansion of interdigit webbing, which is controlled by a novel complex of muscles 2,3 . Bat hindlimbs are comparatively short, with free, symmetrical digits, providing an informative contrast that can be used to highlight the genetic processes involved in bat wing formation. Previous studies that examined gene expression in developing bat forelimbs and hindlimbs reported differential expression of several genes, including Tbx3, Brinp3, Meis2, the 5′ HoxD genes and components of the Shh-Fgf signaling loop, suggesting that multiple genes and processes are involved in generating these morphological innovations [4][5][6][7][8] . Gene regulatory elements are thought to be important drivers of these changes: for example, replacement of the mouse Prx1 limb enhancer with the equivalent bat sequence resulted in elongated forelimbs 9 . However, an integrated understanding of how changes in regulatory elements, various genes and signaling pathways combine to collectively shape the bat wing remains largely elusive.To characterize the genetic differences that underlie divergence in bat forelimb and hindlimb development, we used a comprehensive, genome-wide strategy. We generated a de novo whole-genome assembly for the vesper bat, M. natalensis, for which a well-characterized stage-by-stage morphological comparison between developing bat and mouse limbs is available 10 . In this species, the developing forelimb noticeably diverges from the hindlimb from developmental stages CS15 and CS16, with clear morphological differences seen at a subsequent stage, CS17 (ref. 10). This developmental window is equivalent to embryonic day (E) 12.0 to E13.5 in mouse 4,10 . M. natalensis embryos were obtained and transcriptomic (RNA-seq) data and ChIP-seq data for both an active (acetylation of histone H3 at lysine 27, H3K27ac; refs. 11,12) and a repressive (trimethylation of histone H3 at lysine 27, H3K27me3; ref. 13) mark were generated for these three developmental stages (Fig. 1). Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac and H3K27me3) analyses on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several long noncoding RNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb and hindlimb, and across different stages. ChIP-seq analysis identified thousands of regions that are differentiall...
Summary It has been hypothesised that vegetative desiccation tolerance in resurrection plants evolved via reactivation of the canonical LAFL (i.e. LEC1, ABI3, FUS3 and LEC2) transcription factor (TF) network that activates the expression of genes during the maturation of orthodox seeds leading to desiccation tolerance of the plant embryo in most angiosperms. There is little direct evidence to support this, however, and the transcriptional changes that occur during seed maturation in resurrection plants have not previously been studied. Here we performed de novo transcriptome assembly for Xerophyta humilis, and analysed gene expression during seed maturation and vegetative desiccation. Our results indicate that differential expression of a set of 4205 genes is common to maturing seeds and desiccating leaves. This shared set of genes is enriched for gene ontology terms related to abiotic stress, including water stress and abscisic acid signalling, and includes many genes that are seed‐specific in Arabidopsis thaliana and targets of ABI3. However, while we observed upregulation of orthologues of the canonical LAFL TFs and ABI5 during seed maturation, similar to what is seen in A. thaliana, this did not occur during desiccation of leaf tissue. Thus, reactivation of components of the seed desiccation program in X. humilis vegetative tissues likely involves alternative transcriptional regulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.