Experimental charge density distribution studies complemented by quantum mechanical theoretical calculations of 4-hydroxybenzoic acid (4HBA) (1), 4,4′-bipyridine (44BP) (2), and one polymorphic form of the cocrystal containing 4HBA and 44BP molecules in a 2:1 ratio (3), have been carried out via high resolution single-crystal X-ray diffraction. Synthon formation was found to be the main driving force for crystallization in both (1) and (3) with a carboxylic acid homosynthon present in (1) and a heterosynthon in (3) comprised of a carboxylic acid from 4HBA and a pyridine nitrogen and aromatic hydrogen from 44BP. Topological analysis revealed the bonding in the homosynthon to be stronger than the heterosynthon (305.88 versus. 193.95 kJ mol–1) with a greater number of weak interactions in (3) helping to stabilize the structure. The distance from the hydrogen and hydrogen bond acceptor to the bond critical point (bcp) was also found to be a significant factor in determining bond strength, potentially having a greater effect than lone pair directionality. Two different methods of lattice energy calculations were carried out and both methods found (1) to be more stable than (3) by ∼40 and 10 kJ mol–1 for the LATEN and PIXEL methods, respectively. Energy framework diagrams reveal (1) to be dominated by Coulombic forces while both Coulombic and dispersion forces are prominent in (3) contributing equally to the lattice energy. This study examined the utility of homosynthons and heterosynthons in future crystal engineering endeavors and concluded that although in this case the single molecule crystal was more thermodynamically stable, the asymmetry of the cocrystal system allowed it to form a wider range of interactions resulting in only a small reduction in stability. This highlights the potential of using heterosynthons to develop cocrystals to improve pharmaceuticals. These findings highlight the utility of high-resolution single-crystal X-ray crystallography in rationalizing observed physical properties.
Two polymorphic forms of caffeine (CAF)–glutaric acid (GLU) cocrystals have been studied via high-resolution X-ray crystallography and Bader’s quantum theory of atoms in molecules (QTAIM). For both the monoclinic, 1, and triclinic, 2, systems the experimental charge density distributions of the 1:1 ratio of CAF and GLU polymorphs have been determined and compared. Previous studies have determined that 1 is less stable than 2, in relative humidity (RH) testing. A topological analysis of the electron density distribution (EDD) revealed little difference between the two polymorph internal systems. The packing densities (0.76 vs 0.74) and lattice energies (−101.1 vs −107.1 kJ mol–1) of 1 and 2, respectively, are nearly equivalent, implying that the differences in hygroscopicity between the two polymorphs are not due to crystal lattice porosity or stability. A topological analysis of the number and strength of hydrogen bonds for 1 and 2 revealed nine hydrogen bonds in both polymorphs. “Classical” (O–H···X) hydrogen bonds were similarly present in both polymorphs, stabilizing the cocrystals. However, the sum of the stability produced from the “nonclassical” (C–H···X) bonds is higher in 2: −27.6 vs −38.2 kJ mol–1 for 1 and 2, respectively. One of the nine hydrogen bonds in 1 and 2 varies from the others, caused by the torsional rotation of the aliphatic carbon chain in GLU. This bond is critical for packing stabilization, creating a parallelogram-like packing arrangement in 2 in comparison to ribboning in 1. A Hirshfeld surface analysis found that the percentages of O–H···X hydrogen bonds were nearly identical in 1 and 2 (23.9% vs 22.1%); however, the H···H contacts were higher in 2 (61.4% vs 65.8% for 1 and 2, respectively), suggesting that more hydrogen-based contacts require competitive displacement by water in the hydration of 2 in comparison to 1. Additionally, a stabilizing aromatic cycle stack between CAF molecules is present in 2 due to the varied parallelogram packing arrangement, which was absent in 1; this provided ∼11.3 kJ mol–1 of stability to the system of 2. The solid-state entropies and molecular dipole moments (MDMs) of 1 and 2 supported the relative stability of the individual polymorphs, with 1 having a higher entropy and dipole moment in comparison to 2 (123.2 vs 112.8 J K–1 mol–1 and 7.45 and 4.93 D for 1 and 2, respectively), implying that it has the potential to hydrate more rapidly. These findings are in good agreement with previous experimental RH stability studies, giving further insight into the information gained from thermally averaged ground-state crystal electron density data.
The charge density distribution in a novel cocrystal (1) complex of 1,3-dimethylxanthine (theophylline) and propanedioic acid (malonic acid) has been determined. The molecules crystallize in the triclinic, centrosymmetric space group P1̅, with four independent molecules (Z = 4) in the asymmetric unit (two molecules each of theophylline and malonic acid). Theophylline has a notably high hygroscopic nature, and numerous cocrystals have shown a significant improvement in stability to humidity. A charge density study of the novel polymorph has identified interesting theoretical results correlating the stability enhancement of theophylline via cocrystallization. Topological analysis of the electron density highlighted key differences (up to 17.8) in Laplacian (∇2ρ) between the experimental (EXP) and single-point (SP) models, mainly around intermolecular-bonded carbonyls. Further investigation via molecular electrostatic potential maps reaffirmed that the charge redistribution enhanced intramolecular hydrogen bonding, predominantly for N(2′) and N(2) (61.2 and 61.8 kJ mol–1, respectively). An overall weaker lattice energy of the triclinic form (−126.1 kJ mol–1) compared to that of the monoclinic form (−133.8 kJ mol–1) suggests a lower energy threshold to overcome to initiate dissociation. Future work via physical testing of the novel cocrystal in both dissolution and solubility will further solidify the correlation between theoretical and experimental results.
Carbamazepine (CBZ) is used in the treatment of multiple neurological conditions. Although efficacious, its potential has been limited by its poor solubility, which means that patients are required to take very large doses to gain the desired effect. Co-crystals have been proposed as a means of improving the physicochemical properties of pharmaceutical compounds while maintaining their efficacy. CBZ cocrystallized with saccharin (SAC) and nicotinamide (NIC) have previously been studied, with the CBZ-SAC crystal being more soluble than the commercially available product Tegretol, which only contains CBZ, while the nicotinamide cocrystal was found to be less soluble. High-resolution X-ray crystallography has been carried out on the CBZ-SAC cocrystal and its individual constituents to determine which features of the electron density distribution contribute to the differing physical properties. The number of hydrogen bonds found for the CBZ, SAC, and CBZ-SAC systems were 8, 5, and 10, respectively. Homosynthons (interactions between a pair of identical functional groups) are the primary bonding motif in CBZ and SAC, while a heterosynthon is also present in the cocrystal. Molecular electrostatic potential (MEP) maps show that cocrystallization results in changes in distribution around the carboxamide group, thus accommodating heterosynthon formation and leading to subsequent charge redistribution across the CBZ molecule. Additional lattice energy calculations were not able to provide a definitive answer as to which system was most stable. Solid state entropy calculations revealed that the CBZ-SAC cocrystal had a higher entropy, providing explanations for the lower melting point and improved dissolution profile previously described. These investigations at an electronic level help to explain the greater solubility of the CBZ-SAC cocrystal compared to CBZ alone.
In this study, the 1:1 cocrystal of theophylline and malonic acid originally engineered by Trask undergoes charge density analysis to rationalise the chemical change process seen throughout crystallisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.