E2F proteins control cell cycle progression by predominantly acting as either activators or repressors of transcription. How the antagonizing activities of different E2Fs are integrated by cis-acting control regions into a final transcriptional output in an intact animal is not well understood. E2F function is required for normal development in many species, but it is not completely clear for which genes E2F-regulated transcription provides an essential biological function. To address these questions, we have characterized the control region of the Drosophila PCNA gene. A single E2F binding site within a 100-bp enhancer is necessary and sufficient to direct the correct spatiotemporal program of G1-S-regulated PCNA expression during development. This dynamic program requires both E2F-mediated transcriptional activation and repression, which, in Drosophila, are thought to be carried out by two distinct E2F proteins. Our data suggest that functional antagonism between these different E2F proteins can occur in vivo by competition for the same binding site. An engineered PCNA gene with mutated E2F binding sites supports a low level of expression that can partially rescue the lethality of PCNA null mutants. Thus, E2F regulation of PCNA is dispensable for viability, but is nonetheless important for normal Drosophila development.
Substrate specificity of SCF E3 ubiquitin ligases is thought to be determined by the F box protein subunit. Another component of SCF complexes is provided by members of the Roc1/Rbx1/Hrt1 gene family, which encode RING-H2 proteins. Drosophila contains three members of this gene family. We show that Roc1a mutant cells fail to proliferate. Further, while the F box protein Slimb is required for Cubitus interruptus (Ci) and Armadillo/beta-catenin (Arm) proteolysis, Roc1a mutant cells hyperaccumulate Ci but not Arm. This suggests that Slimb and Roc1a function in the same SCF complex to target Ci but that a different RING-H2 protein acts with Slimb to target Arm. Consequently, the identity of the Roc subunit may contribute to the selection of substrates by metazoan SCF complexes.
Cervicofacial actinomycosis is an unusual cause of head and neck masses in children. This low prevalence of disease in children inevitably leads to delay in clinical recognition and often requires invasive intervention for diagnosis and curative therapy. We present an illustrative case and review cases of cervicofacial actinomycosis in the pediatric literature with particular attention to clinical presentation, course, and outcome.
Trauma complicated by hemorrhagic shock (T/HS) is the leading cause of morbidity and mortality in the United States for individuals under the age of 44 years. Initial survivors are susceptible to developing multiple organ failure (MOF), which is thought to be caused, at least in part, by excessive or maladaptive activation of inflammatory pathways. We previously demonstrated in rodents that T/HS results in liver injury that can be prevented by IL-6 administration at the start of resuscitation; however, the contribution of the severity of HS to the extent of liver injury, whether or not resuscitation is required, and the mechanism(s) for the IL-6 protective effect have not been reported. In the experiments described here, we demonstrated that the extent of liver inflammation induced by T/HS depends on the duration of hypotension and requires resuscitation. We established that IL-6 administration at the start of resuscitation is capable of completely reversing liver inflammation and is associated with increased Stat3 activation. Global assessment of the livers showed that the main effect of IL-6 was to normalize the T/HS-induced inflammation transcriptome. Pharmacological inhibition of Stat3 activity within the liver blocked the ability of IL-6 to prevent liver inflammation and to normalize the T/HS-induced liver inflammation transcriptome. Genetic deletion of a Stat3β, a naturally occurring, dominant-negative isoform of the Stat3, attenuated T/HS-induced liver inflammation, confirming a role for Stat3, especially Stat3α, in preventing T/HS-mediated liver inflammation. Thus, T/HS-induced liver inflammation depends on the duration of hypotension and requires resuscitation; IL-6 administration at the start of resuscitation reverses T/HS-induced liver inflammation, through activation of Stat3α, which normalized the T/HS-induced liver inflammation transcriptome.
Trauma with hemorrhagic shock (T/HS), has been shown to result in liver injury marked by hepatocyte apoptosis and heart failure marked by cardiomyocyte apoptosis, both of which we have shown to be prevented by IL-6 administration at resuscitation, and Stat3 largely mediated this. As specific mediators have not been delineated, we investigated the unfolded protein response (UPR), which, with marked activation, can lead to apoptosis. Prior studies of hepatic and cardiac injury examined limited repertoires of UPR elements, making it difficult to assess the role of the UPR in T/HS. This study describes the first global examination of the UPR transcriptome in the liver and heart following T/HS, demonstrating organ-specific UPR transcriptome changes. The non-canonical UPR chaperone, Hsp70, was most dysregulated following T/HS and may contribute to hepatocyte protection via an IL-6-mediated pathway, identifying a potential new therapeutic strategy to prevent hepatocyte death and organ dysfunction in T/HS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.