Membrane permeability and P-glycoprotein (Pgp) can be limiting factors for blood-brain barrier penetration. The objectives of this study were to determine whether there are differences in the in vitro permeability, Pgp substrate profiles, and physicochemical properties of drugs for central nervous system (CNS) and non-CNS indications, and whether these differences are useful criteria in selecting compounds for drug development. Apparent permeability (P app ) and Pgp substrate profiles for 93 CNS (n ϭ 48) and non-CNS (n ϭ 45) drugs were determined by monolayer efflux. Calcein-AM inhibition assays were used to supplement the efflux results. The CNS set (2 of 48, 4.2%) had a 7-fold lower incidence of passive permeability values Ͻ150 nm/s compared with the non-CNS set (13 of 45, 28.9%). The majority of drugs (72.0%, 67 of 93) were not Pgp substrates; however, 49.5% (46 of 93) were positive in the calcein-AM assay when tested at 100 M. The CNS drug set (n ϭ 7 of 48, 14.6%) had a 3-fold lower incidence of Pgp-mediated efflux than the non-CNS drug set (n ϭ 19 of 45, 42.2%). Analysis of 18 physicochemical properties revealed that the CNS drug set had fewer hydrogen bond donors, fewer positive charges, greater lipophilicity, lower polar surface area, and reduced flexibility compared with the non-CNS group (p Ͻ 0.05), properties that enhance membrane permeability. This study on a large, diverse set of marketed compounds clearly demonstrates that permeability, Pgp-mediated efflux, and certain physicochemical properties are factors that differentiate CNS and non-CNS drugs. For CNS delivery, a drug should ideally have an in vitro passive permeability Ͼ150 nm/s and not be a good (B 3 A/A 3 B ratio Ͻ2.5) Pgp substrate.The delivery of a new drug candidate to the central nervous system (CNS) can be a significant challenge during drug development. Often, the CNS distribution of a drug is poor because of exclusion at the blood-brain barrier (BBB) (Abbott and Romero, 1996;Pardridge, 1997). The BBB is composed of a single layer of endothelial cells connected by tight junctions. Brain microvascular endothelial cells lack fenestrations, have few pinocytotic vesicles, and express a variety of metabolic enzymes and membrane efflux transporters, such as P-glycoprotein (Pgp) (Rubin and Staddon, 1999; Kusuhara and Sugiyama, 2001a,b). These features make the BBB a formidable barrier that drugs must overcome to reach the brain parenchyma.Early assessment of the ability of a drug candidate to penetrate the CNS is critical during the drug discovery selection process, especially for therapeutic indications that require delivery to a CNS site of action. Equally important is the ability to design drugs for non-CNS indications that have minimal brain penetration to avoid undesirable CNS side effects. Over the past several years, academia and industry have invested significant effort in the development and implementation of lead optimization screens, including in vitro assays and computational models to evaluate CNS penetration.A number o...
Enfuvirtide (ENF), the first approved fusion inhibitor (FI) for HIV, is a 36-aa peptide that acts by binding to the heptad repeat 1 (HR1) region of gp41 and preventing the interaction of the HR1 and HR2 domains, which is required for virus-cell fusion. Treatmentacquired resistance to ENF highlights the need to create FI therapeutics with activity against ENF-resistant viruses and improved durability. Using rational design, we have made a series of oligomeric HR2 peptides with increased helical structure and with exceptionally high HR1/HR2 bundle stability. The engineered peptides are found to be as much as 3,600-fold more active than ENF against viruses that are resistant to the HR2 peptides ENF, T-1249, or T-651. Passaging experiments using one of these peptides could not generate virus with decreased sensitivity, even after >70 days in culture, suggesting superior durability as compared with ENF. In addition, the pharmacokinetic properties of the engineered peptides were improved up to 100-fold. The potent antiviral activity against resistant viruses, the difficulty in generating resistant virus, and the extended half-life in vivo make this class of fusion inhibitor peptide attractive for further development.coiled coil ͉ gp41 HIV-1 ͉ viral entry ͉ drug design
BackgroundHuman African trypanosomiasis (HAT) is an important public health problem in sub-Saharan Africa, affecting hundreds of thousands of individuals. An urgent need exists for the discovery and development of new, safe, and effective drugs to treat HAT, as existing therapies suffer from poor safety profiles, difficult treatment regimens, limited effectiveness, and a high cost of goods. We have discovered and optimized a novel class of small-molecule boron-containing compounds, benzoxaboroles, to identify SCYX-7158 as an effective, safe and orally active treatment for HAT.Methodology/Principal FindingsA drug discovery project employing integrated biological screening, medicinal chemistry and pharmacokinetic characterization identified SCYX-7158 as an optimized analog, as it is active in vitro against relevant strains of Trypanosoma brucei, including T. b. rhodesiense and T. b. gambiense, is efficacious in both stage 1 and stage 2 murine HAT models and has physicochemical and in vitro absorption, distribution, metabolism, elimination and toxicology (ADMET) properties consistent with the compound being orally available, metabolically stable and CNS permeable. In a murine stage 2 study, SCYX-7158 is effective orally at doses as low as 12.5 mg/kg (QD×7 days). In vivo pharmacokinetic characterization of SCYX-7158 demonstrates that the compound is highly bioavailable in rodents and non-human primates, has low intravenous plasma clearance and has a 24-h elimination half-life and a volume of distribution that indicate good tissue distribution. Most importantly, in rodents brain exposure of SCYX-7158 is high, with Cmax >10 µg/mL and AUC0–24 hr >100 µg*h/mL following a 25 mg/kg oral dose. Furthermore, SCYX-7158 readily distributes into cerebrospinal fluid to achieve therapeutically relevant concentrations in this compartment.Conclusions/SignificanceThe biological and pharmacokinetic properties of SCYX-7158 suggest that this compound will be efficacious and safe to treat stage 2 HAT. SCYX-7158 has been selected to enter preclinical studies, with expected progression to phase 1 clinical trials in 2011.
of Contents Introduction Overpotential and Electrocatalysis Organometallic Mediators Ferrocenes Phthalocyanines Hexacya nofer rate( 111) Ruthenium Oxide Complexes Meta I loporphyri ns Phenoxazines, Phenathiazines and Phenazines Organic Mediators Phenoxazine mediators Meldola Blue Nile Blue Phenathiazine mediators Phenazine mediators Qu i none-H yd roqu i nones Tetrat h iaf u Iva lene and Tetracyanoq u i nodi methane Tetrat h iafu Iva lene (TTF) Tet racya noq u i nod i metha ne (TCN Q) Phenylenediamine (PD) and Tetramethylphenylenediamine (TMPD) Conclusions References
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.