Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase beta subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and beta subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the beta subunit.
Voltage-dependent K+ (Kv) channels repolarize the action potential in neurons and muscle. This type of channel is gated directly by membrane voltage through protein domains known as voltage sensors, which are molecular voltmeters that read the membrane voltage and regulate the pore. Here we describe the structure of a chimaeric voltage-dependent K+ channel, which we call the 'paddle-chimaera channel', in which the voltage-sensor paddle has been transferred from Kv2.1 to Kv1.2. Crystallized in complex with lipids, the complete structure at 2.4 ångström resolution reveals the pore and voltage sensors embedded in a membrane-like arrangement of lipid molecules. The detailed structure, which can be compared directly to a large body of functional data, explains charge stabilization within the membrane and suggests a mechanism for voltage-sensor movements and pore gating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.