Inositol 3,4,5,6-tetrakisphosphate is a novel intracellular signal that regulates calcium-dependent chloride conductance (Xie, W., Kaetzel, M. A., Bruzik, K. S., Dedman, J. R., Shears, S. B., and Nelson, D. J. (1996) J. Biol. Chem. 271, 14092-14097). The molecular mechanisms that regulate the cellular levels of this signal are not characterized. To pursue this problem we have now studied the 1-kinase that deactivates inositol 3,4,5,6-tetrakisphosphate. The enzyme was purified from rat liver 1600-fold with a 1% yield. The native molecular mass was determined to be 46 kDa by gel filtration. The Km values for inositol 3,4,5,6-tetrakisphosphate and ATP were 0. 3 and 10.6 microM, respectively. The kinase was unaffected by either protein kinase A or protein kinase C. Increases in Ca2+ concentration from 0.1 to 1-2 microM inhibited activity by 10-20%. Most importantly, inositol 1,3,4-trisphosphate was shown to be a potent (Ki = 0.2 microM), specific, and competitive inhibitor of the 1-kinase. Our new kinetic data show that typical receptor-dependent adjustments in cellular levels of inositol 1,3,4-trisphosphate provide a mechanism by which the concentration of inositol 3,4,5,6-tetrakisphosphate is dependent on changes in phospholipase C activity. These conclusions also provide a new perspective to our understanding of the physiological importance of the pathway of inositol phosphate turnover initiated by the inositol 1,4, 5-trisphosphate 3-kinase.