Deep Neural Networks (DNNs) have established themselves as a dominant technique in machine learning. DNNs have been top performers on a wide variety of tasks including image classification, speech recognition, and face recognition. 1-3 Convolutional neural networks (CNNs) have been used in nearly all of the top performing methods on the Labeled Faces in the Wild (LFW) dataset. [3][4][5][6] In this talk and accompanying paper, I attempt to provide a review and summary of the deep learning techniques used in the state-of-the-art. In addition, I highlight the need for both larger and more challenging public datasets to benchmark these systems.Despite the ability of DNNs and autoencoders to perform unsupervised feature learning, modern facial recognition pipelines still require domain specific engineering in the form of re-alignment. For example, in Facebook's recent DeepFace paper, a 3D "frontalization" step lies at the beginning of the pipeline. This step creates a 3D face model for the incoming image and then uses a series of affine transformations of the fiducial points to "frontalize" the image. This step enables the DeepFace system to use a neural network architecture with locally connected layers without weight sharing as opposed to standard convolutional layers. 6 Deep learning techniques combined with large datasets have allowed research groups to surpass human level performance on the LFW dataset. 3, 5The high accuracy (99.63% for FaceNet at the time of publishing) and utilization of outside data (hundreds of millions of images in the case of Google's FaceNet) suggest that current face verification benchmarks such as LFW may not be challenging enough, nor provide enough data, for current techniques. 3, 5 There exist a variety of organizations with mobile photo sharing applications that would be capable of releasing a very large scale and highly diverse dataset of facial images captured on mobile devices. Such an "ImageNet for Face Recognition" would likely receive a warm welcome from researchers and practitioners alike.
Traditional computer graphics rendering pipelines are designed for procedurally generating 2D images from 3D shapes with high performance. The nondifferentiability due to discrete operations (such as visibility computation) makes it hard to explicitly correlate rendering parameters and the resulting image, posing a significant challenge for inverse rendering tasks. Recent work on differentiable rendering achieves differentiability either by designing surrogate gradients for non-differentiable operations or via an approximate but differentiable renderer. These methods, however, are still limited when it comes to handling occlusion, and restricted to particular rendering effects. We present RenderNet, a differentiable rendering convolutional network with a novel projection unit that can render 2D images from 3D shapes. Spatial occlusion and shading calculation are automatically encoded in the network. Our experiments show that RenderNet can successfully learn to implement different shaders, and can be used in inverse rendering tasks to estimate shape, pose, lighting and texture from a single image.Recent work in differentiable rendering achieves differentiability in various ways. Loper and Black [2] propose an approximate renderer which is differentiable. Kato et al. [3] achieve differentiability by proposing an approximate gradient for the rasterization operation. Recent work on image-based reconstruction uses differentiable projections of 3D objects onto silhouette masks as a surrogate for a rendered image of the objects [4, 5]. Wu et al. [6] and Tulsiani et al. [7] derive differentiable projective 32nd Conference on Neural Information Processing Systems (NeurIPS 2018),
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.