JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.Oxford University Press and The Review of Economic Studies, Ltd. are collaborating with JSTOR to digitize, preserve and extend access to The Review of Economic Studies. This paper presents specification tests that are applicable after estimating a dynamic model from panel data by the generalized method of moments (GMM), and studies the practical performance of these procedures using both generated and real data. Our GMM estimator optimally exploits all the linear moment restrictions that follow from the assumption of no serial correlation in the errors, in an equation which contains individual effects, lagged dependent variables and no strictly exogenous variables. We propose a test of serial correlation based on the GMM residuals and compare this with Sargan tests of over-identifying restrictions and Hausman specification tests.
In this paper we represent this type of matrix by Zi = diag (yil, .Yis), (s = 1 ... i T-2).
An alternative choice of AN is (N-1 ZfAlZi)-l withA = N-1 S The resulting estimator does not depend on the data fourth-order moments and is asymptotically equivalent to '2 provided the vi, are serially independent. Note that in this case E(Z!ti3ivZi) = E(Z!fliZi) and limN o0 N-1 , E[Z!(fli -fN)Zi] = O (see White (1982), p. 492).
Estimation of the dynamic error components model is considered using two alternative linear estimators that are designed to improve the properties of the standard firstdifferenced GMM estimator. Both estimators require restrictions on the initial conditions process. Asymptotic efficiency comparisons and Monte Carlo simulations for the simple AR(1) model demonstrate the dramatic improvement in performance of the proposed estimators compared to the usual first-differenced GMM estimator, and compared to non-linear GMM. The importance of these results is illustrated in an application to the estimation of a labour demand model using company panel data.1998 Elsevier Science S.A. All rights reserved.
JEL classification: C23
Estimation of the dynamic error components model is considered using two alternative linear estimators that are designed to improve the properties of the standard firstdifferenced GMM estimator. Both estimators require restrictions on the initial conditions process. Asymptotic efficiency comparisons and Monte Carlo simulations for the simple AR(1) model demonstrate the dramatic improvement in performance of the proposed estimators compared to the usual first-differenced GMM estimator, and compared to non-linear GMM. The importance of these results is illustrated in an application to the estimation of a labour demand model using company panel data.1998 Elsevier Science S.A. All rights reserved.
JEL classification: C23
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimatorshave been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the initial conditions process. Using data for a panel of R&Dperforming US manufacturing companies we find that the additional instruments used in our extended GMM estimator yield much more reasonable parameter estimates.panel data, GMM, production functions,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.