The calculation of excited state energies of electronic structure Hamiltonians has many important applications, such as the calculation of optical spectra and reaction rates. While low-depth quantum algorithms, such as the variational quantum eigenvalue solver (VQE), have been used to determine ground state energies, methods for calculating excited states currently involve the implementation of high-depth controlled-unitaries or a large number of additional samples. Here we show how overlap estimation can be used to deflate eigenstates once they are found, enabling the calculation of excited state energies and their degeneracies. We propose an implementation that requires the same number of qubits as VQE and at most twice the circuit depth. Our method is robust to control errors, is compatible with error-mitigation strategies and can be implemented on near-term quantum computers.
We investigate correlations among complementary observables. In particular, we show how to take advantage of mutually unbiased bases (MUBs) for the efficient detection of entanglement in arbitrarily high-dimensional, multipartite and continuous variable quantum systems. The introduced entanglement criteria are relatively easy to implement experimentally since they require only a few local measurement settings. In addition, we establish a link between the separability problem and the maximum number of mutually unbiased bases -- opening a new avenue in this long-standing open problem.Comment: 8 pages, 2 figur
Estimating the expectation value of an operator corresponding to an observable is a fundamental task in quantum computation. It is often impossible to obtain such estimates directly, as the computer is restricted to measuring in a fixed computational basis. One common solution splits the operator into a weighted sum of Pauli operators and measures each separately, at the cost of many measurements. An improved version collects mutually commuting Pauli operators together before measuring all operators within a collection simultaneously. The effectiveness of doing this depends on two factors. Firstly, we must understand the improvement offered by a given arrangement of Paulis in collections. In our work, we propose two natural metrics for quantifying this, operating under the assumption that measurements are distributed optimally among collections so as to minimise the overall finite sampling error. Motivated by the mathematical form of these metrics, we introduce SORTED INSERTION, a collecting strategy that exploits the weighting of each Pauli operator in the overall sum. Secondly, to measure all Pauli operators within a collection simultaneously, a circuit is required to rotate them to the computational basis. In our work, we present two efficient circuit constructions that suitably rotate any collection of k independent commuting n-qubit Pauli operators using at most kn−k(k+1)/2 and O(kn/logk) two-qubit gates respectively. Our methods are numerically illustrated in the context of the Variational Quantum Eigensolver, where the operators in question are molecular Hamiltonians. As measured by our metrics, SORTED INSERTION outperforms four conventional greedy colouring algorithms that seek the minimum number of collections.
The density matrix of a qudit may be reconstructed with optimal efficiency if the expectation values of a specific set of observables are known. In dimension six, the required observables only exist if it is possible to identify six mutually unbiased complex (6 × 6) Hadamard matrices. Prescribing a first Hadamard matrix, we construct all others mutually unbiased to it, using algebraic computations performed by a computer program. We repeat this calculation many times, sampling all known complex Hadamard matrices, and we never find more than two that are mutually unbiased. This result adds considerable support to the conjecture that no seven mutually unbiased bases exist in dimension six.
The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision , QPE requires O(1) repetitions of circuits with depth O(1/ ), whereas each expectation estimation subroutine within VQE requires O(1/ 2 ) samples from circuits with depth O(1). We propose a generalised VQE algorithm that interpolates between these two regimes via a free parameter α ∈ [0, 1] which can exploit quantum coherence over a circuit depth of O(1/ α ) to reduce the number of samples to O (1/ 2(1−α) ). Along the way, we give a new routine for expectation estimation under limited quantum resources that is of independent interest. I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.