Phylogenetic analysis of a 292-nucleotide (nt) fragment of the hantavirus M genome segment from 36 rodent and 13 human samples from three known foci of hantavirus infection in Argentina was conducted. A 1654-nt fragment of the M genome segment was analyzed for 1 representative of 7 genetically distinct hantavirus lineages identified. Additionally, the nt sequence of the complete M genome segments of Lechiguanas, Oran, and Hu39694 hantavirus genotypes was determined. nt sequence comparisons reveal that 7 hantavirus lineages from Argentina differ from each other by 11.5%-21.8% and from Sin Nombre, Bayou, and Black Creek Canal viruses by 23.8%-26.5%. Phylogenetic analyses demonstrate that they form a unique, separate branch within the clade containing other New World sigmodontine-borne hantaviruses. Most Oligoryzomys-borne hantavirus genotypes clearly map together. The Oligoryzomys-borne genotypes Lechiguanas, Oran, and Andes appear to be associated with human disease. Oligoryzomys longicaudatus was identified as the likely rodent reservoir for Andes virus.
Hantaviruses are tri-segmented negative sense single stranded RNA viruses that belong to the family Bunyaviridae. In nature, hantaviruses are exclusively maintained in the populations of their specific rodent hosts. In their natural host species, hantaviruses usually develop a persistent infection with prolonged virus shedding in excreta. Humans become infected by inhaling virus contaminated aerosol. Unlike asymptomatic infection in rodents, hantaviruses cause two acute febrile diseases in humans: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). The mortality rate varies from 0.1% to 40% depending on the virus involved. Hantaviruses are distributed world wide, with over 150,000 HFRS and HPS cases being registered annually. In this review we summarize current knowledge on hantavirus molecular biology, epidemiology, genetic diversity and co-evolution with rodent hosts. In addition, special attention was given in this review to describing clinical manifestation of HFRS and HPS, and advances in our current understanding of the host immune response, treatment, and prevention.
Genetic reassortment has been shown to play an important role in the evolution of several segmented RNA viruses and in the epidemiology of associated diseases. Sin Nombre (SN) virus is the cause of hantavirus pulmonary syndrome throughout the western United States. Like other hantaviruses, it possesses a genome consisting of three negative-sense RNA segments, S, M, and L. Recent analysis has demonstrated the presence of at least three different hantaviruses in Nevada and eastern California, including SN, Prospect Hill-like, and El Moro Canyon-like viruses. In addition, two distinct lineages of SN virus can be found in Peromyscus maniculatus rodents (sometimes in close proximity) trapped at study sites in this region. Data obtained by phylogenetic analysis of sequence differences detected among the S, M, and L genome segments of these SN viruses are consistent with reassortment having taken place between SN virus genetic variants. The results suggest that M (and to a lesser extent S or L) genome segment flow occurs within SN virus populations in P. maniculatus in this region. No reassortment was detected between SN virus and other hantavirus types present in the area. This finding suggests that as genetic distance increases, the frequency of formation of viable reassortants decreases, or that hantaviruses which are primarily maintained in different rodent hosts rarely have the opportunity to genetically interact.
To study the ecologic correlates of hantavirus in deer mice (Peromyscus maniculatus), we sampled 114 sites in the Walker River Basin of Nevada and California in 1995-1996. Blood samples were tested for antibody to hantavirus, and a subset of samples was also tested for virus RNA by reverse transcription-polymerase chain reaction. Average prevalence of antibody-positive mice was 17%, with heavier males the most likely to be infected. Antibody prevalence varied within repeatedly sampled sites from 0% to 50% over the course of several months, suggesting possible infection cycles. Although there was no linear correlation between deer mouse density and antibody prevalence on sample sites, more complex relationships between density and prevalence appeared likely. Specifically, infections were less likely where rodent densities were lower than a critical threshold value. However, above this value, density had no effect on prevalence.
The susceptibility of hematopoietic progenitor cells to infection by human cytomegalovirus (HCMV) was investigated using several strains of HCMV, including the recombinant strain RC256. RC256 is derived from the laboratory strain Towne and contains the Escherichia coli LacZ gene coding for beta-galactosidase (beta-gal) regulated by an early HCMV promoter. Expression of LacZ allowed the detection of HCMV in individual hematopoietic cells. Clonogeneic bone marrow (BM) progenitors, including CD34+ cells, could be infected with HCMV and would then form normal hematopoietic colonies. By polymerase chain reaction (PCR) amplification of DNA, HCMV could be detected in both erythroid and myeloid colonies. LacZ activity was observed predominantly in cells of myelomonocytic lineage. When cells derived from HCMV-infected progenitors were cocultivated with permissive human fibroblasts, infectious virus expressing LacZ was recovered. Although no characteristic HCMV cytopathology was observed in BM colonies, high virus to cell ratios resulted in a moderate inhibition of colony formation. Since infected hematopoietic progenitors can harbor HCMV for weeks and through several differentiation steps in culture, we postulate that in vivo these cells may serve as a reservoir of latent virus and contribute to HCMV dissemination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.