The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.
Author summaryMagnetic Resonance Imaging (MRI) is a non-invasive way to measure human brain structure and activity that has been used for over 25 years. There are thousands MRI studies performed every year generating a substantial amount of data. At the same time, many new data analysis methods are being developed every year. The potential of using new analysis methods on the variety of existing and newly acquired data is hindered by difficulties in software deployment and lack of support for standardized input data. Here we propose to use container technology to make deployment of a wide range of data analysis techniques easy. In addition, we adapt the existing data analysis tools to interface with data organized in a standardized way. We hope that this approach will enable researchers to access a wider range of methods when analyzing their data which will lead to accelerated progress in human neuroscience.
The reproducibility of activation patterns in the whole brain obtained by functional magnetic resonance imaging (fMRI) experiments at 4 Tesla was studied with a simple finger-opposition task. Six subjects performed three runs in one session, and each run was analyzed separately with the t-test as a univariate method and Fisher's linear discriminant analysis as a multivariate method. Detrending with a first- and third-order polynomial as well as logarithmic transformation as preprocessing steps for the t-test were tested for their impact on reproducibility. Reproducibility across the whole brain was studied by using scatter plots of statistical values and calculating the correlation coefficient between pairs of activation maps. In order to compare reproducibility of "activated" voxels across runs, subjects and models, 2% of all voxels in the brain with the highest statistical values were classified as activated. The analysis of reproducible activated voxels was performed for the whole brain and within regions of interest. We found considerable variability in reproducibility across subjects, regions of interest, and analysis methods. The t-test on the linear detrended data yielded better reproducibility than Fisher's linear discriminant analysis, and therefore seems to be a robust although conservative method. Preliminary data indicate that these modeling results may be reversed by preprocessing to reduce respiratory and cardiac physiological noise effects. The reproducibility of both the position and number of activated voxels in the sensorimotor cortex was highest, while that of the supplementary motor area was much lower, with reproducibility of the cerebellum falling in between the other two areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.