Abstract. Species' geographic range limits interest biologists and resource managers alike; however, scientists lack strong mechanistic understanding of the factors that set geographic range limits in the field, especially for animals. There exists a clear need for detailed case studies that link mechanisms to spatial dynamics and boundaries because such mechanisms allow us to predict whether climate change is likely to change a species' geographic range and, if so, how abundance in marginal populations compares to the core.The bagworm Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae) is a major native pest of cedars, arborvitae, junipers, and other landscape trees throughout much of North America. Across dozens of bagworm populations spread over six degrees of latitude in the American Midwest we find latitudinal declines in fecundity and egg and pupal survivorship as one proceeds toward the northern range boundary. A spatial gradient of bagworm reproductive success emerges, which is associated with a progressive decline in local abundance and an increase in the risk of local population extinction near the species' geographic range boundary.We developed a mathematical model, completely constrained by empirically estimated parameters, to explore the relative roles of reproductive asynchrony and stage-specific survivorship in generating the range limit for this species. We find that overwinter egg mortality is the biggest constraint on bagworm persistence beyond their northern range limit. Overwinter egg mortality is directly related to winter temperatures that fall below the bagworm eggs' physiological limit. This threshold, in conjunction with latitudinal declines in fecundity and pupal survivorship, creates a nonlinear response to climate extremes that sets the geographic boundary and provides a path for predicting northward range expansion under altered climate conditions. Our mechanistic modeling approach demonstrates how species' sensitivity to climate extremes can create population tipping points not reflected in demographic responses to climate means, a distinction that is critical to successful ecological forecasting.
Since their earliest days, humans have been struggling with infectious diseases. Caused by viruses, bacteria, protozoa, or even higher organisms like worms, these diseases depend critically on numerous intricate interactions between parasites and hosts, and while we have learned much about these interactions, many details are still obscure. It is evident that the combined host-parasite dynamics constitutes a complex system that involves components and processes at multiple scales of time, space, and biological organization. At one end of this hierarchy we know of individual molecules that play crucial roles for the survival of a parasite or for the response and survival of its host. At the other end, one realizes that the spread of infectious diseases by far exceeds specific locales and, due to today's easy travel of hosts carrying a multitude of organisms, can quickly reach global proportions. The community of mathematical modelers has been addressing specific aspects of infectious diseases for a long time. Most of these efforts have focused on one or two select scales of a multi-level disease and used quite different computational approaches. This restriction to a molecular, physiological, or epidemiological level was prudent, as it has produced solid pillars of a foundation from which it might eventually be possible to launch comprehensive, multi-scale modeling efforts that make full use of the recent advances in biology and, in particular, the various high-throughput methodologies accompanying the emerging –omics revolution. This special issue contains contributions from biologists and modelers, most of whom presented and discussed their work at the workshop From within Host Dynamics to the Epidemiology of Infectious Disease, which was held at the Mathematical Biosciences Institute at Ohio State University in April 2014. These contributions highlight some of the forays into a deeper understanding of the dynamics between parasites and their hosts, and the consequences of this dynamics for the spread and treatment of infectious diseases.
Objectives Rift-Valley Fever (RVF) is a zoonotic mosquito-borne disease in Africa and the Arabian Peninsula. Drivers for this disease vary by region and are not well understood for North African countries such as Egypt. A deeper understanding of RVF risk factors would inform disease management policies. Study design The present study employs mathematical and computational modeling techniques to ascertain the extent to which the severity of RVF epizootics in Egypt differs depending on the interaction between imported ruminant and environmentally-constrained mosquito populations. Methods An ordinary differential system of equations, a numerical model, and an individual-based model (IBM) were constructed to represent RVF disease dynamics between localized mosquitoes and ruminants being imported into Egypt for the Greater Bairam. Four cases, corresponding to the Greater Bairam's occurrence during distinct quarters of the solar year, were set up in both models to assess whether the different season-associated mosquito populations present during the Greater Bairam resulted in RVF epizootics of variable magnitudes. Results The numerical model and the IBM produced nearly identical results: ruminant and mosquito population plots for both models were similar in shape and magnitude for all four cases. In both models, all four cases differed in the severity of their corresponding simulated RVF epizootics. The four cases, ranked by the severity of the simulated RVF epizootics in descending order, correspond with the occurrence of the Greater Bairam on the following months: July, October, April, and January. The numerical model was assessed for sensitivity with respected to parameter values and exhibited a high degree of robustness. Conclusions Limiting the illegal importation of ruminants by strengthening and enforcing border control policies 1 month prior to the Greater Bairam (on years in which the festival falls between the months of July and October: 2015-2022) might be a feasible and moderately effective way of mitigating future RVF epizootics, and potentially epidemics, in Egypt.
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.