Understanding the therapeutic effect of drug dose and scheduling is critical to inform the design and implementation of clinical trials. The increasing complexity of both mono, and particularly combination therapies presents a substantial challenge in the clinical stages of drug development for oncology. Using a systems pharmacology approach, we have extended an existing PK-PD model of tumor growth with a mechanistic model of the cell cycle, enabling simulation of mono and combination treatment with the ATR inhibitor AZD6738 and ionizing radiation. Using AZD6738, we have developed multi-parametric cell based assays measuring DNA damage and cell cycle transition, providing quantitative data suitable for model calibration. Our in vitro calibrated cell cycle model is predictive of tumor growth observed in in vivo mouse xenograft studies. The model is being used for phase I clinical trial designs for AZD6738, with the aim of improving patient care through quantitative dose and scheduling prediction.
During the development of new drugs or compounds there is a requirement for preclinical trials, commonly involving animal tests, to ascertain the safety of the compound prior to human trials. Machine learning techniques could provide an in-silico alternative to animal models for assessing drug toxicity, thus reducing expensive and invasive animal testing during clinical trials, for drugs that are most likely to fail safety tests. Here we present a machine learning model to predict kidney dysfunction, as a proxy for drug induced renal toxicity, in rats. To achieve this, we use inexpensive transcriptomic profiles derived from human cell lines after chemical compound treatment to train our models combined with compound chemical structure information. Genomics data due to its sparse, high-dimensional and noisy nature presents significant challenges in building trustworthy and transparent machine learning models. Here we address these issues by judiciously building feature sets from heterogenous sources and coupling them with measures of model uncertainty achieved through Gaussian Process based Bayesian models. We combine the use of insight into the feature-wise contributions to our predictions with the use of predictive uncertainties recovered from the Gaussian Process to improve the transparency and trustworthiness of the model.
Purpose: Understanding and predicting the flow of bulk pharmaceutical materials could be key in enabling pharmaceutical manufacturing by continuous direct compression (CDC). This study examines whether, by taking powder and bulk measurements, and using statistical modelling, it would be possible the flow of a range of materials likely to be used in CDC. Methods: More than 100 materials were selected for study, from four pharmaceutical companies. Particle properties were measured by static image analysis, powder surface area and surface energy techniques, and flow by shear cell measurements. The data was then analysed and a range of statistical modelling techniques were used, to build predictive models for flow. Results: Using the results from static image analysis a model could be built which allowed the prediction of likely flow in a shear cell, which can be related to performance in a CDC system. Only a small amount of powder was required for the image analysis. Surface area did not add to the precision of the model, and the available surface energy technique did not correlate with flow. Conclusions: A small sample of powder can be examined by Static image analysis, and this data can be used to give an early read on likely flow of a material in a CDC system or other pharmaceutical process, allowing early intervention (if necessary) to improve the characteristics of a material, early in development.
Understanding the therapeutic effect of drug dose and scheduling is critical to inform the design and implementation of clinical trials. The increasing complexity of both mono, and particularly combination therapies presents a substantial challenge in the clinical stages of drug development for oncology. Using a systems pharmacology approach, we have extended an existing PK-PD model of tumor growth with a mechanistic model of the cell cycle, enabling simulation of mono and combination treatment with the ATR inhibitor AZD6738 and ionizing radiation. Using AZD6738, we have developed multi-parametric cell based assays measuring DNA damage and cell cycle transition, providing quantitative data suitable for model calibration. Our in vitro calibrated cell cycle model is predictive of tumor growth observed in in vivo mouse xenograft studies. The model is being used for phase I clinical trial designs for AZD6738, with the aim of improving patient care through quantitative dose and scheduling prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.