This study estimates the maximum and minimum degrees of autocompaction for radiocarbon-dated Holocene mangrove sediments in Singapore, in order to correct apparent sediment accretion rates for the effects of sediment compression due to autocompaction. Relationships developed for a suite of modern (surface) sediment samples between bulk density, particle-size distribution, and organic matter content were used to estimate the initial (uncompacted) bulk density of buried and variably compressed Holocene sediments, based on the grain-size distribution and organic matter content of the sediment. The difference between measured (compacted) and initial (uncompacted) bulk density of each buried sediment interval can be interpreted as the amount of length shortening experienced by each interval since burial. This allows the elevation of samples selected for 14 C dating to be corrected for the effects of autocompaction of the underlying sediment sequence, so that accurate estimates of vertical sediment accretion rates can be calculated.The 3 Holocene mangrove sequences analyzed and dated for this study ranged in age from 2000 to 8500 cal BP. The effects of autocompaction are significant, even in comparatively thin sequences, with subsidence of up to 56 cm calculated for carbon-dated samples presently 2 m above incompressible basement. The vertical sediment accretion rates for these mangrove sequences ranged from 0.99 to 6.84 mm/yr and carbon sequestration rates ranged from 0.9 to 1.7 t/ha/yr, all within the range observed for comparable Holocene and modern mangrove sediments elsewhere.
Relative sea-level (RSL) records from far-field regions distal from ice sheets remain poorly understood, particularly in the early Holocene. Here, we extended the Holocene RSL data from Singapore by producing early Holocene sea-level index points (SLIPs) and limiting dates from a new ~40 m sediment core. We merged new and published RSL data to construct a standardized Singapore RSL database consisting of 88 SLIPs and limiting data. In the early Holocene, RSL rose rapidly from −21.0 to −0.7 m from ~9500 to 7000 cal. yrs. BP. Thereafter, the rate of RSL rise decelerated, reaching a mid-Holocene highstand of 4.0 ± 4.5 m at 5100 cal. yrs. BP, before falling to its present level. There is no evidence of any inflections in RSL when the full uncertainty of SLIPs is considered. When combined with other standardized data from the Malay-Thai Peninsula, our results also show substantial misfits between regional RSL reconstructions and glacial isostatic adjustment (GIA) model predictions in the rate of early Holocene RSL rise, the timing of the mid-Holocene highstand and the nature of late-Holocene RSL fall towards the present. It is presently unknown whether these misfits are caused by regional processes, such as subsidence of the continental shelf, or inaccurate parameters used in the GIA model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.