Ice shelf thickness for the whole of Antarctica is derived from 4 years (2011–2014) of CryoSat‐2 (CS2) radar altimetry measurements using the assumption that the shelves are in hydrostatic equilibrium. The satellite orbit and novel synthetic aperture radar interferometric mode of CS2 results in 92.3% data coverage over the ice shelves, with particular improvements around the grounding zone. When compared to ICESat data, surface elevations have a mean bias of less than 1 m and a fourfold reduction in standard deviation compared with the previous data set. Over the Amery Ice Shelf there is a mean thickness difference of 3.3% between radio echo sounding measurements and the CS2‐derived thicknesses, rising to 4.7% within 10 km of the grounding line. Our new data set provides key improvements in accuracy and coverage, especially in the grounding zone, allowing for reduced uncertainties in mass budget calculations, subshelf ocean and ice sheet‐shelf modeling.
We present a reassessment of input‐output method ice mass budget estimates for the Abbot and Getz regions of West Antarctica using CryoSat‐2‐derived ice thickness estimates. The mass budget is 8 ± 6 Gt yr−1 and 5 ± 17 Gt yr−1 for the Abbot and Getz sectors, respectively, for the period 2006–2008. Over the Abbot region, our results resolve a previous discrepancy with elevation rates from altimetry, due to a previous 30% overestimation of ice thickness. For the Getz sector, our results are at the more positive bound of estimates from other techniques. Grounding line velocity increases up to 20% between 2007 and 2014 alongside mean elevation rates of −0.67 ± 0.13 m yr−1 between 2010 and 2013 indicate the onset of a dynamic thinning signal. Mean snowfall trends of −0.33 m yr−1 water equivalent since 2006 indicate recent mass trends are driven by both ice dynamics and surface processes.
Abstract. We present a new, fully automated method of mapping the Antarctic Ice Sheet's grounding zone using a repeat-track analysis and crossover analysis of newly acquired ICESat-2 laser altimeter data. We map the position of the landward limit of tidal flexure and the inshore limit of hydrostatic equilibrium, as demonstrated over the mountainous and hitherto difficult to survey grounding zone of Larsen C Ice Shelf. Since the start of data acquisition in 2018, our method has already achieved a near 9-fold increase in the number of grounding zone observations compared with ICESat, which operated between 2003 and 2009. We have improved coverage in particular over the previously poorly mapped the Bawden and Gipps ice rises and Hearst Island. Acting as a reliable proxy for the grounding line, which cannot be directly imaged by satellites, our ICESat-2-derived landward limit of tidal flexure locations agrees well with independently obtained measurements, with a mean absolute difference and standard deviation of 0.39 and 0.32 km, respectively, compared to interferometric synthetic-aperture-radar-based observations. Our results demonstrate the efficiency, density, and high spatial accuracy with which ICESat-2 can image complex grounding zones and its clear potential for future mapping of the pan-ice sheet grounding zone.
Abstract. The Antarctic grounding zone, which is the transition between the fully grounded ice sheet to freely floating ice shelf, plays a critical role in ice sheet stability, mass budget calculations, and ice sheet model projections. It is therefore important to continuously monitor its location and migration over time. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctic Ice Sheet, including three important boundaries: the inland limit of tidal flexure (Point F), inshore limit of hydrostatic equilibrium (Point H), and the break in slope (Point Ib). This dataset was derived from automated techniques developed in this study, using ICESat-2 laser altimetry repeat tracks between 30 March 2019 and 30 September 2020. The new grounding zone product has a near-complete coverage of the Antarctic Ice Sheet with a total of 21 346 Point F, 18 149 Point H, and 36 765 Point Ib locations identified, including the difficult-to-survey grounding zones, such as the fast-flowing glaciers draining into the Amundsen Sea embayment. The locations of newly derived ICESat-2 landward limit of tidal flexure agree well with the most recent differential synthetic aperture radar interferometry (DInSAR) observations in 2018, with a mean absolute separation and standard deviation of 0.02 and 0.02 km, respectively. By comparing the ICESat-2-derived grounding zone with the previous grounding zone products, we find a grounding line retreat of up to 15 km on the Crary Ice Rise of Ross Ice Shelf and a pervasive landward grounding line migration along the Amundsen Sea embayment during the past 2 decades. We also identify the presence of ice plains on the Filchner–Ronne Ice Shelf and the influence of oscillating ocean tides on grounding zone migration. The product derived from this study is available at https://doi.org/10.5523/bris.bnqqyngt89eo26qk8keckglww (Li et al., 2021) and is archived and maintained at the National Snow and Ice Data Center.
Abstract. The Antarctic Peninsula has become an increasingly important component of the Antarctic Ice Sheet mass budget over the last 2 decades, with mass losses generally increasing. However, due to the challenges presented by the topography and geometry of the region, there remain large variations in mass balance estimates from conventional approaches and in assessing the relative contribution of individual ice sheet processes. Here, we use a regionally optimized Bayesian hierarchical model joint inversion approach that combines data from multiple altimetry studies (ENVISAT, ICESat, CryoSat-2 swath), gravimetry (GRACE and GRACE-FO), and localized DEM differencing observations to solve for annual mass trends and their attribution to individual driving processes for the period 2003–2019. This is first time that such localized observations have been assimilated directly to estimate mass balance as part of a wider-scale regional assessment. The region experienced a mass imbalance rate of -19±1.1 Gt yr−1 between 2003 and 2019, predominantly driven by accelerations in ice dynamic mass losses in the first decade and sustained thereafter. Inter-annual variability is driven by surface processes, particularly in 2016 due to increased precipitation driven by an extreme El Niño, which temporarily returned the sector back to a state of positive mass balance. In the West Palmer Land and the English Coast regions, surface processes are a greater contributor to mass loss than ice dynamics in the early part of the 2010s. Our results show good agreement with conventional and other combination approaches, improving confidence in the robustness of mass trend estimates, and in turn, understanding of the region's response to changes in external forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.