SummaryBackgroundInternational consensus recognises four medulloblastoma molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGrp3), and group 4 (MBGrp4), each defined by their characteristic genome-wide transcriptomic and DNA methylomic profiles. These subgroups have distinct clinicopathological and molecular features, and underpin current disease subclassification and initial subgroup-directed therapies that are underway in clinical trials. However, substantial biological heterogeneity and differences in survival are apparent within each subgroup, which remain to be resolved. We aimed to investigate whether additional molecular subgroups exist within childhood medulloblastoma and whether these could be used to improve disease subclassification and prognosis predictions.MethodsIn this retrospective cohort study, we assessed 428 primary medulloblastoma samples collected from UK Children's Cancer and Leukaemia Group (CCLG) treatment centres (UK), collaborating European institutions, and the UKCCSG-SIOP-PNET3 European clinical trial. An independent validation cohort (n=276) of archival tumour samples was also analysed. We analysed samples from patients with childhood medulloblastoma who were aged 0–16 years at diagnosis, and had central review of pathology and comprehensive clinical data. We did comprehensive molecular profiling, including DNA methylation microarray analysis, and did unsupervised class discovery of test and validation cohorts to identify consensus primary molecular subgroups and characterise their clinical and biological significance. We modelled survival of patients aged 3–16 years in patients (n=215) who had craniospinal irradiation and had been treated with a curative intent.FindingsSeven robust and reproducible primary molecular subgroups of childhood medulloblastoma were identified. MBWNT remained unchanged and each remaining consensus subgroup was split in two. MBSHH was split into age-dependent subgroups corresponding to infant (<4·3 years; MBSHH-Infant; n=65) and childhood patients (≥4·3 years; MBSHH-Child; n=38). MBGrp3 and MBGrp4 were each split into high-risk (MBGrp3-HR [n=65] and MBGrp4-HR [n=85]) and low-risk (MBGrp3-LR [n=50] and MBGrp4-LR [n=73]) subgroups. These biological subgroups were validated in the independent cohort. We identified features of the seven subgroups that were predictive of outcome. Cross-validated subgroup-dependent survival models, incorporating these novel subgroups along with secondary clinicopathological and molecular features and established disease risk-factors, outperformed existing disease risk-stratification schemes. These subgroup-dependent models stratified patients into four clinical risk groups for 5-year progression-free survival: favourable risk (54 [25%] of 215 patients; 91% survival [95% CI 82–100]); standard risk (50 [23%] patients; 81% survival [70–94]); high-risk (82 [38%] patients; 42% survival [31–56]); and very high-risk (29 [13%] patients; 28% survival [14–56]).InterpretationThe discovery of seven novel, clinically significant subgrou...
SummaryWe undertook a comprehensive clinical and biological investigation of serial medulloblastoma biopsies obtained at diagnosis and relapse. Combined MYC family amplifications and P53 pathway defects commonly emerged at relapse, and all patients in this group died of rapidly progressive disease postrelapse. To study this interaction, we investigated a transgenic model of MYCN-driven medulloblastoma and found spontaneous development of Trp53 inactivating mutations. Abrogation of p53 function in this model produced aggressive tumors that mimicked characteristics of relapsed human tumors with combined P53-MYC dysfunction. Restoration of p53 activity and genetic and therapeutic suppression of MYCN all reduced tumor growth and prolonged survival. Our findings identify P53-MYC interactions at medulloblastoma relapse as biomarkers of clinically aggressive disease that may be targeted therapeutically.
Infant high grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histological review, methylation profiling, custom panel and genome/exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an 'intrinsic' spectrum of disease specific to the infant population. These included those with targetable MAP-kinase alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n=31), NTRK1/2/3 (n=21), ROS1 (n=9) and MET (n=4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly supports the concept that infant gliomas require a change in diagnostic practice and management.
Modification of the growth conditions of NSC-34 mouse neuroblastoma ϫ motor neurone cells by serum depletion promotes the expression of functional glutamate receptors as the cells mature into a form that bears the phenotypic characterisation of motor neurones. Immunocytochemical studies demonstrated the presence of the glutamate receptor proteins NMDAR1, NMDAR2A/B, GluR1, GluR2, GluR2/3, GluR4, GluR6/7, and KA2. Toxicity assays using cell counting techniques demonstrated a mild but significant cell death (ϳ30%, p Ͻ 0.01) following a 24-h exposure to 1 mM glutamate that could be prevented by the presence of the glutamate receptor antagonists (ϩ)-5-methyl-10,11-dihydro-5H-dibenzo[a,d ]cyclohepten-5,10-imine maleate (10 M ) and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f ]quinoxaline-7-sulphonamide (1 M). As an indication of glutamate receptor functional activity a novel approach was used to detect the production of free radicals following stimulation with glutamate receptor agonists. The release of superoxide free radicals was detected using a microelectrochemical sensor following addition of glutamate receptor agonists to the cell bathing solution. Alterations in intracellular calcium concentrations were examined using fura-2 imaging. Exposure of the differentiated NSC-34 cells to glutamate leads to an increase in intracellular calcium concentrations that is prevented by the presence of glutamate receptor antagonists. The motor neurone origin of these cells makes them particularly useful for investigating the potential role of glutamatergic toxicity in motor neurone degeneration. Key Words: Excitotoxicity-NSC-34 cells-Glutamate -Free radicalsMotor neurone disease.
Immune-therapy is an attractive alternative therapeutic approach for targeting central nervous system (CNS) tumors and the constituency of the Tumor Immune Microenvironment (TIME) likely to predict patient response. Here, we describe the TIME of >6000 primarily pediatric CNS tumors using a deconvolution approach (methylCIBERSORT). We produce and validate a custom reference signature defining 11 non-cancer cell types to estimate relative proportions of infiltration in a panCNS tumor cohort spanning 80 subtypes. We group patients into three broad immune clusters associated with CNS tumor types/subtypes. In cohorts of medulloblastomas (n = 2325), malignant rhabdoid tumors (n = 229) and pediatric high-grade gliomas (n = 401), we show significant associations with molecular subgroups/ subtypes, mutations, and prognosis. We further identify tumor-specific immune clusters with phenotypic characteristics relevant to immunotherapy response (i.e. Cytolytic score, PDL1 expression). Our analysis provides an indication of the potential future therapeutic and prognostic possibilities of immuno-methylomic profiling in pediatric CNS tumor patients that may ultimately inform approach to immune-therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.