Sucrase-isomaltase (SI), an intestine-specific gene, is induced in the differentiated small intestinal villous epithelium during the suckling-weaning transition in mice. We have previously identified cis-acting elements within a short evolutionarily conserved SI promoter. However, the nature and profile of expression of the interacting proteins have not been fully characterized during this developmental transition. Herein, we show that hepatocyte nuclear factor-1 alpha (HNF-1 alpha), GATA-4, and caudal related homeodomain proteins Cdx2 and Cdx1 are the primary transcription factors from the adult mouse intestinal epithelium to interact with the SIF3, GATA, and SIF1 elements of the SI promoter. We wanted to study whether HNF-1 alpha, GATA-4, and Cdx2 can cooperate in the regulation of SI gene expression. Immunolocalization experiments revealed that HNF-1 alpha is detected in rare epithelial cells of suckling mice and becomes progressively more expressed in the villous epithelial cells during the suckling-weaning transition. GATA-4 protein is expressed exclusively in villous differentiated epithelial cells of the proximal small intestine, decreases in expression in the ileum, and becomes undetectable in the colon. HNF-1 alpha, GATA-4, and Cdx2 interact in vitro and in vivo. These factors activate SI promoter activity in cotransfection experiments where GATA-4 requires the presence of both HNF-1 alpha and Cdx2. These findings imply a combinatory role of HNF-1 alpha, Cdx2, and GATA-4 for the time- and position-dependent regulation of SI transcription during development.
Gata4, a member of the zinc finger family of GATA transcription factors, is highly expressed in duodenum and jejunum but is nearly undetectable in distal ileum of adult mice. We show here that the caudal reduction of Gata4 is conserved in humans. To test the hypothesis that the regional expression of Gata4 is critical for the maintenance of jejunal-ileal homeostasis in the adult small intestine in vivo, we established an inducible, intestine-specific model that results in the synthesis of a transcriptionally inactive Gata4 mutant. Synthesis of mutant Gata4 in jejuna of 6-to 8-week-old mice resulted in an attenuation of absorptive enterocyte genes normally expressed in jejunum but not in ileum, including those for the anticipated targets liver fatty acid binding protein (Fabp1) and lactase-phlorizin hydrolase (LPH), and a surprising induction of genes normally silent in jejunum but highly expressed in ileum, specifically those involved in bile acid transport. Inactivation of Gata4 resulted in an increase in the goblet cell population and a redistribution of the enteroendocrine subpopulations, all toward an ileal phenotype. The gene encoding Math1, a known activator of the secretory cell fate, was induced ϳ75% (P < 0.05). Gata4 is thus an important positional signal required for the maintenance of jejunal-ileal identities in the adult mouse small intestine.
Background & Aims GATA transcription factors regulate genes in multiple organs to control proliferation and differentiation. GATA4 is expressed in the proximal 85% of the small intestine, where it regulates the expression of genes that are specifically expressed by absorptive enterocytes. GATA6 is co-expressed with GATA4 but is also expressed in the ileum; its function in the mature small intestine is unknown. Methods We investigated the function of GATA6 in small intestine using adult mice with inducible disruption of Gata6, or Gata6 and Gata4, specifically in the intestine. Results In ileum, deletion of Gata6 reduced in proliferation and numbers of enteroendocrine cells, increased numbers of goblet-like cells in crypts, caused loss of Paneth cells, and altered expression of genes specific to absorptive enterocytes. In contrast, in jejunum and duodenum, deletion of Gata6 increased numbers of Paneth cells. Deletion of Gata6 and Gata4 resulted jejunal and duodenal phenotype that was nearly identical to that in the ileum after deletion of Gata6 alone, demonstrating that most GATA4 functions are redundant with those of GATA6. Conclusion GATA transcription factors are required for proliferation, secretory cell differentiation, and expression of genes by absorptive enterocytes in the small intestinal epithelium.
In many mammalian species, the intestinal epithelium undergoes major changes that allow a dietary transition from mother's milk to the adult diet at the end of the suckling period. These complex developmental changes are the result of a genetic programme intrinsic to the gut tube, but its regulators have not been identified. Here we show that transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1) is highly expressed in the developing and postnatal intestinal epithelium until the suckling to weaning transition. Intestine-specific deletion of Blimp1 results in growth retardation and excessive neonatal mortality. Mutant mice lack all of the typical epithelial features of the suckling period and are born with features of an adult-like intestine. We conclude that the suckling to weaning transition is regulated by a single transcriptional repressor that delays epithelial maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.