Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.
Individual-based assignment tests are now standard tools in molecular ecology and have several applications, including the study of dispersal. The measurement of natal dispersal is vital to understanding the ecology of many species, yet the accuracy of assignment tests in situations where natal dispersal is common remains untested in the field. We studied a metapopulation of the grand skink, Oligosoma grande, a large territorial lizard from southern New Zealand. Skink populations occur on isolated, regularly spaced rock outcrops and are characterized by frequent interpopulation dispersal. We examined the accuracy of assignment tests at four replicate sites by comparing long-term mark-and-recapture records of natal dispersal with the results of assignment tests based on microsatellite DNA data. Assignment tests correctly identified the natal population of most individuals (65-100%, depending on the method of assignment), even when interpopulation dispersal was common (5-20% dispersers). They also provided similar estimates of the proportions of skinks dispersing to those estimated by the long-term mark-and-recapture data. Fully and partially Bayesian assignment methods were equally accurate but their accuracy depended on the stringency applied, the degree of genetic differentiation between populations, and the number of loci used. In addition, when assignments required high confidence, the method of assignment (fully or partially Bayesian) had a large bearing on the number of individuals that could be assigned. Because assignment tests require significantly less fieldwork than traditional mark-and-recapture approaches (in this study < 3 months vs. > 7 years), they will provide useful dispersal data in many applied and theoretical situations.
Sex in reptiles is determined by genes on sex chromosomes or by incubation temperature. Previously these two modes were thought to be distinct, yet we show that high incubation temperatures reverse genotypic males (ZZ) to phenotypic females in a lizard with ZZ and ZW sex chromosomes. Thus, the W chromosome is not necessary for female differentiation. Sex determination is probably via a dosage-sensitive male-determining gene on the Z chromosome that is inactivated by extreme temperatures. Our data invite a novel hypothesis for the evolution of temperature-dependent sex determination (TSD) and suggest that sex chromosomes may exist in many TSD reptiles.
Two prevailing paradigms explain the diversity of sex‐determining modes in reptiles. Many researchers, particularly those who study reptiles, consider genetic and environmental sex‐determining mechanisms to be fundamentally different, and that one can be demonstrated experimentally to the exclusion of the other. Other researchers, principally those who take a broader taxonomic perspective, argue that no clear boundaries exist between them. Indeed, we argue that genetic and environmental sex determination in reptiles should be seen as a continuum of states represented by species whose sex is determined primarily by genotype, species where genetic and environmental mechanisms coexist and interact in lesser or greater measure to bring about sex phenotypes, and species where sex is determined primarily by environment. To do otherwise limits the scope of investigations into the transition between the two and reduces opportunities to use studies of reptiles to advance understanding of vertebrate sex determination generally. BioEssays 26:639–645, 2004. © 2004 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.